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Two kinetic temperature description for shock waves
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A two kinetic temperature displaced Maxwellian is used as the weight function for a Hermite expansion of
the distribution function. The expansion is cut up to fourteen moments following Grad’s theory. The moment
equations are used to derive under a Knudsen type expansion what one may call two-temperature Navier-
Stokes equation@T-NS). The 2T-NS equations are then solved numerically, for a plane shock wave, and a
comparison between Navier-Stokes, Holian theory, and results from molecular dynamics and Monte Carlo is
performed.[S1063-651X98)10009-0

PACS numbsds): 05.60-+w, 51.10+y, 52.35.Tc

I. INTRODUCTION In this work we use the 14-moment approximation in

Shock wave phenomena provide a natural arena for highIGra-d’s solutipn to the B_oltzmann equati_on focused on Qb'
o o . : _ Yalnmg constitutive relations that result in a corresponding
nonequilibrium situations in V\_/h|ch several theories can bGNavier-Stokes regime with two temperatures that we refer to
tes_ted. AIth(_)ugh most comparisons h_ave been done for smalk ihe two-temperature Navier-Stokes the(2y-NS). The
or intermediate Mach numbefs—6], with the advent of the ¢4y ations have been solved numerically for a plane shock
computer, simulations for Mach numbers of about 100 hav§yaye as is also done for the Navier-Stokes and Holian equa-
been reported7—-9]. Thus it seems interesting to study the tjons. A comparison with results from simulations is given
different theoretical approaches that have been advanced ¥nd several remarks concerning the comparison are done.
explain the structure of shock waves at high Mach numbers. |n 1964 Holway[23] claimed that there is no solution for
In this paper we concentrate on the simulations that werghe moment equations in the case of shock waves, no matter
done for the rigid sphere model at low density using molecuhow many terms are included in the Hermite polynomial
lar dynamics[9] and the direct simulation Monte Carlo expansion for the distribution function, for Mach numbers
method[7,9]. In this case the questions of what is the truegreater than 1.851. Such a proof has been recently chal-
interaction potential and what is the equation of state do noenged by Weis§11] concluding that there is no such restric-
represent additional difficulties that need to be addressetion. In this work we focus on obtaining constitutive equa-
since both are accurately known for the rigid sphere model iions for a two-temperature theory and, therefore, the
the dilute regime. There are various recent referef@ed6] ~ Previous remarks are not crucial. The question of why the
in the literature related to the shock wave problem that us&lavier-Stokes equations, which can be derived from linear-
different theories, thus reflecting the current interest in thdzed 13-moment Grad's equations, give a solution for high
problem. In this work we have focused on some aspects d¥tach numbers while the linearized Grad equations do not,
the problem without trying to be exhaustive. remains a mystery that we will not attempt to solve here.
The Navier-Stokes equations have been used with relative In Sec. Il we give the kinetic model and the variables that
success to obtain velocity profiles for shock waves at high

Mach numberg10]. Another theory that is even more suc-
cessful is the one advanced by Holianal.[10], which we
refer to as the Holian theory. It is based on a conjecture that
as yet does not have a microscopic justification; the main
idea is to use a different temperature in the expression for the
transport coefficients. In fact, the present investigation was
undertaken with the hope of providing its kinetic foundation.
To get a quantitative idea about the level of prediction of the
Navier-Stokes equations, the reader may take a look at Fig. 1
where a comparison of the theories mentioned previously
and the results of simulatior($or the velocity profileg can
be found. The reduced variables used are defined in Sec. IV.
As can be seen from the figure, while the Navier-Stokes
theory gives a reasonable profile, the Holian theory gives an
important improvement.

The idea of different temperature profiles in nonequilib-
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FIG. 1. Velocity profileu(s) vs s. Solid circles correspond to

rium situations is not new and has been used with success ile molecular dynamics calculations¢=134), dashed line cor-
problems where there is an external field and an anisotropy i&sponds to the Navier-Stokes equatiorg=(0), and the solid line
to be expected. Also, there are many fields where the idea @b the Holian theory f,=0). We recall for the reader that the MD

different temperatures has been appligd—22. and DSMC vyield similar results.
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we will use. Section Il gives results concerning the consti- HO=1,
tutive equations for the two-temperature theory at the level
of the Navier-Stokes regime. In Sec. IV the equations to be Hi<1>:\,i

solved for the shock wave problem are given and the Holian
conjecture is explained in detail. The numerical solution of
the Navier-Stokes, Holian, and 2T-NS equations is done in

Sec. V and Sec. VI is left for some concluding remarks. 3
H = ViviVie— (Vi Bjic+Vj ik + Vie +)

HiP=vivj— &, 5

II. EXPANSION OF THE DISTRIBUTION FUNCTION

We consider here a stationary plane shock wave propagat- ) ) _
ing in a dilute hard sphere gas whose states are described Bf#d higher order ones, which are unnecessary t¢2sjt
the Boltzmann equation. If we take tkeaxis as the direction ~ According to Grad[25] we use the approximation in
of propagation of the wave, its mean velocity will be given wh|cr_1 the heat flow and th_e pressure Fer)sor are the relevant
by u(r,t)=u(x)i, and we assume that the mean kinetic en_ph3./3|cal moments needed in the desprlptlon. This amount's to
ergy alongx (mkT{®)/2) is different from the mean kinetic taking a®(r,t)=0Vs=4 and in addition to assume, as is

energy along the other axissn(k'lio)/Z). usual in the thirteen-moment approximation, that
The zero order distribution function is given by a dis- 0 (3).2,(3)
i i . a; M =0. (6)
placed Maxwellian with two temperatures: ijk Ttijk

m m 12 The overcircle indicates that we are speaking of ¢bhere-
fOcr,t)=n (0))( 0)) spondingtraceless tensor. It is convenient to introduce fur-
2mkT, ZWKTﬁ ther simplifications corresponding to a situation prevailing in
><exp(—mC§/2kTﬁ°)), one-dimensional shocklwa\./es. First, sinceu(x)i we as-
sume that we have cylindrical symmetry. Furthermore, as-
xexp[—m(C§+ C2)/2kT\%], (1)  suming that the density and mean velocity are given by the

local Maxwellian, we will propose that

where c is the molecular velocityy the mass velocityC
=c—u the peculiar velocityn the number density Boltz- f=fO1+%). (7)
mann’s constant, anch the massT{* andT(*) are the par- _
allel and perpendicular temperatures, respectively. The suFhe quantityé measures the deviation from the Maxwellian
perscript in the temperatures is to remind us that they ardistribution function and can be expressed in terms of either
related to the Maxwelliarflocal equilibrium temperaturgs  the moments or the physical relevant variables, namely,

with f©(c,r,t) as the weight function, the Hermite mul-
tidimensional orthogonal polynomiglg{ ®(v)] can be gen- ~ (Cz kTﬁO)
X

erated in a straightforward way, and the distribution function® = Hxx m ) T (GG i)
can be expanded in terms of such a complete basis. Hence
[24], 2kT
+ Myy C — T + :U’yzcycz+ GXCX
f(e,r,t)=1O(c,r,t)| a@(r,t)y L O (v)+alM(r,t)yH D(v) mC2  mc? i ( : mC; mc 5)
X| —=g+—=5-5|+0,(c,+C)| —=5+ —=5—5].
- 2 T " kT NGT D T T 7@
+sraf (P ®
1 . wherec] =C% =c;+cZ has been introduced in order to sim-
+ aaijk(r't)Hijk(V)'}_ b (2)  plify the notation. Theu's and @’s are defined in the follow-
ing way:
where the components of the dimensionless velocity are de-
fined as L= m ( PXX)_l)
XX 0) 0 ’
1/2 1/2 2kTﬁ I’]kTﬁ
m m
ol oo el e o __mPy
o= T

the quantitiesai(f)’ __.’is(r,t) are the corresponding moments,
which are given by m Pyy 1

L Myy_sz(lo) nkT? '

al¥ =— f fer,HH'® de @)
n mP

yz

: : L Myz= " 2702
The Hermite polynomials that we use in this work are nkeT}
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Ill. TRANSPORT EQUATIONS

X

m [ g 1(1 1

= _—t — — _
5kT|?| nkT® " nk| 70 T

We derive here the equations for the conserved variables
and the fluxes, starting from the Boltzmann equation,

m [ g 1/1 1
0:——y+_ -
Y BkT{®| nkT?  nk| (0 T

Qyl ©) %+C~Vrf=J(f,f), (16)

The pressure tensoPy, heat flux ), andQ are given Where J(f,f) is the collision term whose explicit form is

by given by
P=J f(c,r,t)mCC dC, J(f,f)Ef dedeX (x,9)glf(c’,r,t)f(cy,r,t)
—f(c,r,t)f(c,r,t)], (17
m
CI:f f(c,r,t)§CZC dC, where the primes denote the final velocities of the molecules

in the binary collisionX (x,qg) is the differential cross sec-

m tion, g=|c—¢,| the relative speed, andle denotes the inte-

Q:f f(c,r,t) = C2C dC. (10) gration. over the splid ang!EQG]. The transport equation for
2 an arbitrary function¥’ (c) is obtained from the Boltzmann

o . ] . equation when we multiply it by¥(c) and integrate in the
Substitution of Eq(1) in Eq. (10) yields readily the expres- yelocity space, so

sion of the pressure in terms of the temperatures, namely,
p:%nk'lﬁ%r%nkﬁf’). (12) f ch(f)\If(c)=f dcd(f,f))¥ (o), (18

Further, the condition TR)=3p also implies that where D is a shorthand notation for the drift term in the
Boltzmann equation.
T, \? If ¢(c) corresponds to a summational invariant, we obtain
Hoxx= _Z(T_) Hyy - (12 the corresponding conservation equatji@f]. For a station-
| ary plane shock wave along thalirection, all the relevant

The specific internal energy is also given by the usual eX_quamtltles depend only on thecoordinate and the conserva-

pression26] so that using Eq(1) we also get tion equations can b('e integrated orndd] to give for the
conservation of mass:

E0=3 13 pOOU(X)=Cy, (19
the conservation of momentum
where )
Puxtp(X)u(x)=C,, (20)
— 17(0) 4 21(0)
T(x) 3Th e (14 the energy conservation

is the total temperature. Finally it is important to mention p(O[E(X)+ 3u2(x) Ju(X) + U(X)Pyy+ 0y =C3, (22)
that, within the present approximation, we have the follow-
ing relation betweer], andQ,: whereC,,C,,C5 are constants and the specific internal en-

ergy is given by Eq(13). Equations(19), (20), and (21),
2TO mustbe supplemented by additional constitutive relations for
=\ 1+ 3 2o | @x- (19 P, andq,, which we now obtain.
Tﬁ For\If(c)=(3m/2)C§, and assuming that the fluxes de-
pend only orx, we obtain for the drift terms in the stationary

Notice that the cylindrical symmetry, which was taken case

into account in the expression f6{Eq. (8)], has reduced the

number of variables. At the present level of description we d

have four variables that appear in the Maxwellian (?—X{[Pxx(x)—Pyy(X)]U(X)+3Qx(X)—qX(X)}

(n,u, T, T(?) and 6 fluxes Py, Pyy,Pyy.Py;,0x. anday).

Since Eq.(12) gives a relation betweeR,, and P,,, we 2P, (%) 0U(X):j dcg—mCZJ(f f) 22)
have nine unknowns. The problem is now to obtain the equa- XX X 2 xR

tions needed to solve for the unknowns, so that besides the

conservation equationshich are granted due to the binary and using¥(c)= mCi/Z (we prefer to use this function in-
collision hypothesiswe need constitutive equations for the stead of the usuaV (c)=mC?C,/2 since the collision terms
fluxes. This question will be undertaken in the next sectioncan be evaluated more eagilye obtain for the drift term:
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d 3Py &u(x)L Au(Xx) m 5 " 5
1L UOQ]+ —=u(x) — —+3Q—1 Ad)= 5 W_W [Cii+C,*—CL,—CZl. (27
| 1
0) 21(0)2 2
o[ 3T XX_Eﬂ}:f el e 8.6, With W (c) = (3m/2)C2 and W (c) = (m/2)C2C, it turns
IX[ m 2 m 2 out that all the collision integrals can be evaluated for the

(23)  rigid sphere model, the details of which are given in the
Appendix. We therefore obtain

While it is in principle necessary to consider more functions 3m 3m
¥ to obtain equations for the other fluxes, it turns out that J de—-C2J(f,F)| =—{ &t =), (28)
they are not required if we consider the linear p@ntthe 2 L2

fluxes of the collision term, as will become clear later on. where

A. The collision terms 1,
. . . . . . . gxxE E[CX ,1], (29)
Our main objective is to obtain a generalization of the

Navier-Stokes equations when we have two temperatures in
the Maxwellian. With this idea in mind we do not study the and

equations for the moments in their full generality, instead we

want to obtain the corresponding constitutive relations. In EE[Cil(Ci
order to achieve this objective we will consider a Knudsen

type expansion of the moment equations. The main idea is t

_kT_ﬁo)) 1( z_kT(iO)). (30

m m

C2

Equations(29) and (30) give the relevant collision integrals

oo - . &nd can be expressed in terms of the temperature ratio:
distribution function, typically of the order of the Knudsen P P

number, and so the nonlinear contributions from the fluxes T(O)

. . L
can be neglected if the Knudsen number is small enough. So, c=—5, (31)
when evaluating the collision term we will only consider Tﬁ )

linear contributions in the fluxes. ) )
Using Egs.(7) and (17) we obtain for the linearized col- which measures the temperature asymmetry in the system.

lision term For W (c) =(m/2)C2C, we have that
m m
| dewoatnl, do CZCI(H 1) =5 6T, (32
1 ) kT|” where
:E[\P(C)al]"_ﬂxx ¥(c),| Ci— m_
s [ mC; mC?
Fq: Cy.Cy FﬁO)-FF(Lm—S . (33

+ :U*xy[\I’(C)a(Cny"}_ (ON !

Tio) Expressions for reduced collision integrals defined as
iy ‘I’(C),(Cf_ +Myiq’(0),CyCZ] ¢
XX
£ (c)= ,
ol wio.c mc; mct (KT{O/m)3202n2\m
X " 2k 2k _
mc2  mc? E*(c)= — , (34)
) 5/2 2.2
+6,| ¥(0),(cy+c) ZkTﬁo)+W—5 . (29 (KT(OIm)¥26?n%
Iy
where[,] is a shorthand notation for the terms that contain l“a(c)E 5 > 22 (35
the collision dynamics, (kT|®/m)>%?n Vm
can be found in the Appendix. All of them can be expressed
[\P(C),Q)(C)]Ej dcf dc,deS (x,9)gf O (c,r,t) @ as a function of the ratio of the Maxwellian temperatures.
Figure 2 gives their behavior as a functionmfNotice that
X(cy, I, )W (C)A*[D(C)], (25)  for c=1 (equal temperaturgsheir values are 0;-32/5, and

—64/5, respectively.

AT[@(o)]=exg —A(H)I[P(c)) +P(cy)] B. The constitutive relations
—[®(c)+D(cy)], (26) Direct substitution of the result for the collision terms
given by Eq.(28) in Eqg. (22) gives a way to obtain the
andA(¢) is given by constitutive relation folP,, :
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8n%3T|”? _ au(x)

Pxx=nk'l'ﬁ°)+ =R

(39

Equation(39) is the generalization of the usual constitutive
equation for one temperature, the second term is proportional
to the mean free path and represents a first order Knudsen
correction. The viscosity, which we denote lyy,, is then
given by

2n2k3T(*2
= (40)

I

Mxx—

; using the value oE for equal temperatures given at the end
c of the preceding section, we conclude that for such a case we

FIG. 2. Collision integralg™ (long dashed ling Z* (solid line), have

andT; (small dashed lineas a function ofc=T(/T(%. Forc

. : 5m
=1 their values are 0;-32/5, and—64/5, respectively.

7 1657 “y

kT 1/2
-

J
&[[P"X(X)_PVV(X)JU(X)+3QX(X)_qX(X)] which is the first approximation in a Sonine expansion for

the viscosity. For rigid spheres the exact value of the viscos-
+ 2Py (X) _au(x):3_m (£t o). (36) ity is known[26] and is equal to 1.016 034 ti_mes E41). If
X 2 this more accurate value for the viscosity is used, and also
the corresponding one for the thermal conductiyige Eq.
(48)], it turns out that there is a minor modification to the
Following Grad[25], in the left hand of the equation we solution of the Navier-Stokes equatioftian with the first
make the approximatiorﬁ’xxznk'lﬁo), Pyy:nk'l*lo) and q Sonine expansion expression for the transport coeffigients
=0 (zero order expression for the fluxes in a Knudsen exThe numerical calculations for the Navier-Stokes equations,
pansion. This approximation can be regarded as a way tdo be given later, were obtained with the first order Sonine
obtain the first order correction in a Knudsen expansion foexpansion expression for the transport coefficients, that is,
the fluxes, thus leading to using Egs.(41) and (48).
On the other hand, the condition that the last two terms of
Eq. (38) is zero implies a relationship between the tempera-

d Au(Xx) ture gradients and the collision integégl,, which is itself a
_ 0_ 0) 0) -
(;XU”W nkT{”)u(x)]+2nkT] ax function of T{” and T(%,
3m d 3m
=5 (ot o} (37) S LOKTO=nkT)u()] ==& (42

Hence, Eq.(42) may be regarded as a constitutive relation
Using the definition ofu,, we obtain that for the temperatures. When there are no gradients'l'ﬁ’@r,
T(9 andu, we infer from Eq.(42) and Fig. 2 that the Max-
wellian temperatures should be equal. We will say more
8n2k3T|”° _ au(x) about Eq.(42) later on.

Pyx= nkWO)JF I~ X To obtain the constitutive relation for the heat flux we first
note that the equation for conservation of momentum can be
2 d written as
+%n’15[(nk1ﬁ°)—nkﬂo))u(x)]—gxxz’l.
Ju 1 0Py 43
(39 U= T (43

Using Eqgs.(32) and(43), Eq. (23) can be rewritten as
However, if f=f© is the two-temperature Maxwellian,

which corresponds to zero transport coefficients that is 9 N 3Py 1 9Pk Ju(x)
E~'=0 or o= (zero mean free pathwe do not recover ax[u(X)QX] 2| p ox X9
nkTﬁO). The reason is thaE and ¢,, have the same de-
‘ in the limi a[3kT® 3 nkeT(*?
pendencdsee Eq.(34)], so that in the limitc—« the last + 2 | _° I —Zor (44)
term of Eq.(38) gives a nonzero limiting value. To get the x| m 2 m 2 a4

correct limiting case it is necessary that the sum of the last
two members terms in Eq38) is zero, which implies that If, as was done to obtain the viscosity, in the left hand of the
the pressure tensor is given by Eq. (44) we make the approximatioRy,=nkT|® and Q
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=0 (zero order expression for the fluxes in a Knudsen exequations, which can be obtained from the conservation
pansion, then using the expression fé; we have from Eq. €quations, in terms of the previous reduced variables, they

(44) that read
q :EAnkTﬁO)EiThO) (45) U=370t3, m=§70t 1575, Uo=1. (50
* 2 m dx '
Thus, givenr, the reduced values of the velocity and tem-
where perature at the high density part of the shock can be deter-
mined. We define the Mach numbev{) [9] as the velocity

kT|” 10nkT? 1 1 of the shock wave divided by the sound velocity, both quan-

A= m m F_q 1+(c—1)/(1+2¢c/3)° (40) tities being evaluated at the low density part of the shock, the

ratio of the specific heat at constant pressure divided by the

Equation (45) is a generalization of Fourier's law, with a one at constant volume is taken to be 5/3, so that we obtain

thermal conductivity given by for the Mach number
15n?( kT kT k 3
NI L . (47) Ma= Vg~ (51)
Tyl om m 1+ (c—1)/(1+2c/3) 57
which in the limit of equal temperatured’{=—64/5) be- In terms of these variables, using the constitutive equa-
comes the usual first order Sonine expansion expression féions for the pressure tensor and the heat fies. (39) and
the thermal conductivity: (45)], and using the conservation equati¢gsjs. (19), (20),
and(21)] we obtain the following set of three equations:
75K [ kT
6407 7m “8) n 32 () 4

u(s)=ro+1-u(s),

. . Us) 5 E*(c) ds
The exact value for the rigid spheres model, in the Chapman-

Enskog expansiof26], is 1.02513 times Eq48).

Equations(39), (42), and(45) are the main results of this 3 d 5 TH(S)3/2§*(C)
work. Together with the expressions for the collision inte- gf\\(s)—gﬁ(s)zg D(T (52
grals given in the Appendix, they provide the constitutive
relations needed to close the conservation equations for a 36c7 (S)
two-temperature theory. L (s)+7 (s)+ H d (s)
At the present level of approximation we have a closed set 2 'l 1

Ta(c)[1+(c—1)/(1+2c/3)] o5
of equations for the variables u, T{”, T{”, Py, anda. s 1

That is, we have three equations for the conserved variables  _> | ~rq_T(9)12+ 7/ 1—TU(s

[Egs. (19), (20), and (21)] and three constitutive equations 270 2[ (S 7l ()]

[Egs.(39), (42), and(45)]. We are now in a position to solve . . _
numerically the equations for a plane shock wave using thd he first of Eqs(52) is the reduced form of conservation of

proper dimensionless variables. momentum, the second one is the constitutive relation for the
temperature difference, and the last one is the equation for
IV. THE REDUCED EQUATIONS energy conservation. We have then a closed system of three

equations with three unknowns.
In order to compare with previous work it is convenientto  For the single temperature casz?% T = 7) Egs.(52) re-

use the same dimensionless variables as Healteal. [10]: duce as it should be to the dimensionless Navier-Stokes
0) equations:
5m kT|%(x)
SEX”, |=ﬁ, T”(S)E —|m2—, T(S)
2poo "N ——7s)U'(s) =1+ 1-U(s),
o u(s)
o kTOx) - / Po 49
T(S)= , U=U/Ug, To=—">, ~ ~ ~
- mug > poug 3 (9)— B 7Y4S) 7 (8)= 7o+ 1= WS+ 7o 1-TU(S)].

53

wherel is the “mean free path” and the origin is chosen in 53
such a way that the velocity at this point is equal to ( The Holian[10] conjecture can now be explained in terms of
+Uug)/2. The subscript “0” refers to the asymptotic values in the previous reduced Navier-Stokes equations. Hadiaal.

the low density region of the shock wave whereas the subroticed that the temperature definedndsT =P, is in gen-
script “1” refers to the denser asymptotic values of the eral different from the temperature that appears in the Max-
shock wave. In particulaP is the pressure in the low den- wellian (T) and also in the expression for the transport co-
sity part of the shock. The pressures, temperatures, and vefficients. Hence, they proposed that the temperature in the
locities at the asymptotic regions of the shoélg( P, Tq, expression of the transport coefficients should be replaced by
Ti, Up, Uy), are of course related by the Rankine-HugoniotT, which, in the notation used here, amounts to replacing
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J7 with ~Fu(7-o+ 1-1) in the Navier-Stokes equations. In 10 solve the three different set of equations we first made
this way they obtained that Eq&3) now become some calculations for the Navier-Stokes equations using
three different methods in order to see if the solution was

() S - dependent on the method. The three methods are Adams
=———Vu(rpt+1-uu'(s)=7o+1-u(s) (AD), backward differentiation formulé8DF), and Runge-
u(s) Kutta (RK) [27]. The tolerance was varied to infer the ex-
pected accuracy in each of the numerical methods. It turns
2r(s)— L \u(ro+1-U)7'(S) =27+ 3[1—U(s)]? out that only for the BDF method the tolerance can be varied
- to about the smallest positive model number, which for the
+71o[1-u(s)]. (54 machine used is about 220 3% For the other two meth-

ods(AD and RK) the minimum tolerance that can be used is
They were then able to obtain a closed system of equationgpout 10°'% for smaller tolerances both methods are not
which they solved using finite difference methods. For eachyple to provide the solution to the requested tolerance.
of the three versions of equations that we have described— Eqr the RK method three different variants of order of
2T-NS [Eq. (52)], NS [Eq. (53)], and HO[Eq. (54}—we  accuracy 3, 5, and 8 were used. Only results for the method
must give initial or bOUndary conditions. In order to com- RK(?-S) of accuracy 8 are reported_ The results of our cal-
pare, we have taken the same initial conditions as Holiagy|ations are given in Table I.
etal. [10] and solved the equations using three different The AD method was used to determine the initial “time”
methods, as will be explained below. It should be emphasor the previous mentioned initial conditions, so that the nu-

sized'thgt Eqs(52) are a result obtained solely from the merical solution gave the correct value ofat the origin
constitutive relations for two temperatures and thus represe% 625 to a certain tolerance. The initial “time” found in

an important result of this work. this way iss;=2.488 513 for the Navier-Stokes equations.

This value of s; together with U;=0.250 006 and 7;
V. NUMERICAL CALCULATIONS =0.1875 were used to solve the Navier-Stokes equations
The molecular dynamics data with which we compareWith the other two methodéRK and BDF, and the results
were taken from the work by Holiaet al.[10] who did not ~ are given in Table .
report the Mach 1) number to which the data correspond, From the results of Table | we see that the results from the
although since they refer to the molecular dynamics datd&XK(7-8) method are rather similar to the AD method. The
reported by Salomons and Marescf&l for a Mach number AD method givesu(0)=0.625 000 30 with an estimated ac-
value of 134 we infer that the Mach number, as defined bycuracy of few parts in 1Y) whereas for the RK-8) we have
Salomons and Maresch®], is equal to 134. In order to (0)=0.625 000 30 with again about the same estimated ac-
compare with results of molecular dynamics, which inciden-curacy as for the AD method. Thus, we are tempted to con-
tally gives identical results to the direct simulation Monte clude that with any of the two method&K(7-8),AD] the
Carlo method9], we follow Holianet al.[10] and make the numerical solution is the same with an estimated accuracy of
simplifying assumption that,=0, for M,=134 we obtain  few parts in 16. The results from the BDF method show that
from Eq. (51) that 7o~3.34x 10>, we would like to stress the numerical solution has an estimated accuracy of 16 dig-
that the conditionry=0 is only a reasonable and simplifying its, which is the maximum accuracy that can be obtained
assumption[10]. Hence, the Rankine-Hugoniot equationswith double precision, and that the method has a better be-

imply the following asymptotic values: havior as the tolerance is varied. An accuracy of 16 digits
seems too good to be true and later on we will come to this
Up=1, u;=1/4, 7,=3/16. (55  point. However, the difference between the BDF method and
the other two is about 4 parts in 4,0which seems to imply
Thus the preceding equatiofs2), (53), and(54) are simpli-  that the methods are converging to different values. It should

fied. Holian et al. [10] proposed to give initial conditions be pointed out that in the graphs for the velocity profiles
with valuesu; = 1/4+ 10 6,7,=3/16 and then found the ini- 9iven by Holianet al.[10] this difference cannot be noticed,
tial “time” s; that gave the correct value (0.625) ot the but in problems in which sensitivity to initial conditions is to

origin. The same procedure will be followed here. Holian beV?/XpﬁCted’ It cc,;an be |mp|)or_tar;t. . tinate the “stability”
et al. also mentioned that the finite difference method used f thg mae\;ﬁorgg V\E/}haerrll ?ﬁ: ?/nstles &tlig\rgef,sl%?)rfe ir? as d?relclti{)n
by them was unstable when the integration was done in 9

direction opposite to that of the heat flow, a point that will beorpapt?osr']tiéﬁ;gi Tﬁé;l?,vvg illj](taé urztgngnrlr?(tah?% Qd;?es o'fn:ﬁé
analyzed later on, so we also started at the high density r 9

gion of the shock wave. It is interesting to notice that if theShOCk wave to the cold part. In Table Il the Navier-Stokes

exact asymptotic values of the variables are given, all threfqu""tio.nS are integrated from different initial “t‘i‘m’(’as” to di-
theories give the same constant result that corresponds to t grent final Va|l.Je-S. with the AD m ethod. In royv a” of Table
Euler solution. The reason for this is that all three theoried! We see the initial values(, u;, and ), d|Ecussed pre-
give derivatives foru and the temperatures that are zeroviously, and the corresponding final values (u;, and ).
when the exact asymptotic values are used and since tHe row “c” of the same table we see that the initial value of
numerical methods use the information of the derivatives te is taken to bes;,, that is, the final value of that appears
estimate the next point, it is clear that they will give the samédn row “a” ( s;,=0). The initial velocity and temperature
value for the next point and so on. are taken as their final values in row “a” of Table II. In
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TABLE |. Solution of the reduced Navier-Stokes equationsat with three different methods and
different tolerances. The initial values are given in r@vof Table Il and are the same for the three methods

used.
Tolerance u(0) 7(0)
Adams method
10°° 0.624 9633151746211 0.125 637 756 970 500 7
1010 0.624 997 997 208 8000 0.125 629 385 120 289 6
10 %2 0.625 000 281 414 1292 0.125 628 833 711 147 2
108 0.625 000 300 794 1121 0.125 628 829 032 846 6
10 0.625 000 301 988 3026 0.125 628 828 744 566 4
10 % 0.625 000 302 068 4559 0.125 628 828 725 217 3
RK(7—8) method
10°° 0.625 000 014 402 5979 0.125 628 898 167 095 5
1071 0.625 000 156 383 8825 0.125 628 863 893 462 5
1013 0.625 000 302 077 6498 0.125 628 828 722 997 6
101 0.625 000 302 0799431 0.125 628 828 722 444 2
10°1° 0.625 000 302 080 7412 0.125 628 828 722 251 5
BDF method
10722 0.625 3225698291121 0.125 550 997 767 003 2
10 % 0.625 322 569 829 1870 0.125 550 997 766 985 1
10 0.625 322 569 829 1828 0.125 550 997 766 986 2
1028 0.625 322 569 829 1828 0.125 550 997 766 986 2
10307 0.625 322 569 829 1828 0.125 550 997 766 986 2

other Words' given the initial Va'uesi:2_488 513,’&' monotonic. The results of row “d” in Table Il show that the
—0.250 006, and; = 0.1875 we integrate the NS equation to &ccuracy of the method starts to deteriorate; nevertheless, the

s=0 and then use the values found as initial values angonclusion of a nonmonotonic profile is true, as can be
integrate tos=2.488 513. The results of Table Il show that ShOWn by integrating to a lower value sf We interpret this
, , ~ fact as being a result of the approximation of using initial
there is a difference from the expected values; ( ygyes instead of boundary ones as explained previously.
=0.250 006 andr;=0.1875), but the difference is really e have investigated the “stability” of the BDF method
marginal and can be understood in terms of the roundoffy the same way as described previously for the AD method,
error. Our conclusion is that there is a range in which the ADOUt the results are not shown in the tables. We found the
method is not unstable when the integration is carried out ifnitial time (s;=2.487 856) so that we obtained approxi-
a direction contrary to the heat flow. So, irreversibility andmately the correct value of the velocity profile at zero
local “instability” of the numerical methods are not in gen- [U(0)~0.625 000 049. Using the values obtained at=0
eral related. . _ we integrate tes* =2.487 856 to predict a value for the ve-
We can now analyze the behavior of the solution forIocity profile of u(s*)~0.250 0034, which should be com-
larger values of and integrate the NS equationsgde 4.5. . S o~
In row “b” of Table Il we start with the initial values;s pared with the initial value givenu=0.250 006). We con-
~ . clude that an accuracy of the method of a few parts ihig0
=2.488 513,u;=0.250 006,7;=0.1875 and integrate 8  probably a more reasonable expectation. Nevertheless, it is
=4.5. We see that the final value afis greater than its not enough to explain the different values obtained with the
value ats=2.488 513, which means that the profile is non-other two methods.

TABLE Il. Numerical solution of the reduced Navier-Stokes equations with the Adams method, a toler-
ance of 104 and different initial values.

Si U; Ti St Us Tt
a 2488513 0.250006 0.1875 0.0 0.625 000 301988 303  0.125 628 828 744 566
b Sia Uia Tia 45 0.250 044 358 523 472  0.187 532 170 949 702
c Sta Ura Tta 2.488513 0.250 006 000 000 343  0.187 500 000 000 253

d Stp Usp Ttp 0.0 0.624 999 884 960 198  0.125 628 929 415 134
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TABLE IIl. Numerical solution of the reduced Holian equations with the Adams method, a tolerance of
1015, and different initial values.

Si u; Ti St Ug Tt

a 2.674459 0.250006 0.1875 0.0 0.625000 097 246 4717 0.125628 878 169 2476

b Sia Uia Tia 4.5 0.250 030 127 3770602 0.187 521 849 729 0524
c Sta Ura Tfa 2.674 459 0.250 006 000 0000209 0.187 500 000 000 0155
d Stp Usp Tfp 0.0 0.625000 1794017226 0.125628 858 3369721

For the Holian equations, the initial “time” was deter- ness has been used in the past to compare the results of
mined so that with the initial conditions mentioned beforesimulations or experiment with the results of continuum
the solution ats=0 was approximatelyi=0.625; in row theories, it must be pointed out that a more stringent test
“a” of Table Il the initial conditions and final results can be Would be to compare the distribution function itself as
found. We have done similar calculations as mentioned bePointed out by Bird[7]. However, there is an intermediate
fore and similar conclusions can be obtained from the table@ption of comparing the profiles, which is the one used here.
there is a region in which the equations can be integrated i this respect, it should be pointed out that while the theory
a direction opposite to the heat flow without having “insta- advanced by Holiart al. represents an important improve-
bility” of the method and the velocity and temperature pro- ment over the Navier-Stokes equations, there is room to im-
files are nonmonotonic. prove the temperature profiles that are shown in Fig. 3.

For the 2T-NS theory similar calculations can be done but AS @ test of our numerical calculations for low Mach
it is not necessary to do them in order to obtain the conclunumbers we have compared the maximum slope shock thick-
sion that the theory does not give the correct asymptoti®€ss Q) as defined by Gilbarg and Paolu¢@8]. Recently
behavior for different temperatures. In fact from the consti-Ruggeri[29] has recalculated Gilbarg and Paolucci values
tutive relation for the temperatures given by H42) and  for a soft sphere modépower law potentig| apparently not
Fig. 2 the conclusion can be obtained. Suppose that at for the rigid sphere case, for which the temperature depen-
=0.0 we haveT| O>T( thatis,c<1, from Fig. 2 we see dence of the transport coefficients goes lik&, with s
that&*<0 and from Eq(42) we see that the variation of the =0.816, obtaining good agreement. Our calculations for

temperature difference is negative so when integrating to/A, wherelo is the mean free path28], for the rigid
higher values of the difference will decrease. However, if SPhere model are the same as the values reported by Gilbarg

we integrate to values lower thar-0.0 the situation is just and Paolucci ab,=1.2, but are 0.7% and 1.8% higher than
the opposite and we will have that the difference will in- their values foM,=2.0 andM,=3.0, respectively. Appar-
crease, but the asymptotic behavior for a normal shock wavently they had problems in calculating the maximum slope
is that the asymptotic states correspond to equilibrium, so th&hock thickness for Mach numbers greater than 3 for the
2T-NS equations cannot give this behavior. It should beidid sphere model and for a soft sphere model wath
pointed out that if equal temperatures are taken then the ré= 0-816, however, Ruggeri reported numerical calculations
sults of the 2T-NS equations are the same as the NavieHP t0M,=11in the last case. .

Stokes equations, so the 2T-NS equations do not give any- With respect to the conditiom,=0 we would like to

thing new for normal shock waves. The idea that a two- 0.20 . ‘ ,
temperature displaced Maxwellian can offer an improvement 22
to the Navier-Stokes equations is not true if only the first ¥
correction in the Knudsen expansion is considered. The con- 015 | .’/’
clusion is valid only for normal shock waves although the o/
2T-NS theory developed here could find applications in other d
situations. : ool .0 4
We have calculated the shock wave thicknesséT)(, ° /',
which is defined a§10] Ry
0.05 - ... /l
() ,/
U;—Ug (u;—21) 1 L
st 11/ == ) (56) 0.00 e : :
T u'(0) u’(0) 2.0 1.0 0.0 10 20

o ) ) FIG. 3. Temperature profile(s) vss. Solid circles correspond
obtaining that, usindgl,=134, for the Navier-Stokes equa- o the molecular dynamics calculation#{=134), dashed line
tions and the Holiaret al. theory it has values of 1.58and  corresponds to the Navier-Stokes equations=0), and the solid
2.091, respectively, and for the molecular dynamics simula-jine to the Holian theory £,=0). We recall for the reader that the
tions its value is equal to 2.35[10]. While the shock thick- MD and DSMC yield similar results.



3218 F. J. URIBE, R. M. VELASCO, AND L. S. GARQ-COLIN PRE 58

TABLE IV. Shock thickness for the rigid sphere model as athe range & T(¥< 2Tﬁ°), the upper limit may possibly be
function of the Mach number for the NaVier-StOKe}B) equations extended if the analytlc continuation to the hypergeometrlc

and the Holiaret al. theory (HO). series is used. Nevertheless, we do not think that such an
extension can change our conclusion about the asymptotic

Ma Ast/l (NS) Asr/l (HO) My Asr/l (NS) Ast/l (HO)  popavior.

1.2 13.749 13.897 8.0 1.616 2160 The Holian conjecture gives higher values for the trans-
port coefficients, viscosity, and thermal conductivity, than

2.0 3.323 3.706 100  1.584 2134 the ones corresponding to the usual Navier-Stokes regime.

—T10)7(0) _ i

30 2208 2 680 134 1528 2087 F_or c<1, Wherec—TL_ /Tﬁ o the_ 2T-NS theory predlcts_ a
higher value for the viscosity while the thermal conductivity

5.0 1.757 2.282 © 1.528 2.087 is lower than the corresponding Navier-Stokes results,

whereas in the case>1 the situation is just the opposite.
For c=1 the 2T-NS theory gives identical results as the
avier-Stokes equations. In this case the solution to the
-NS equations is stable in the sense that once the tempera-
es are equal they remain equal regardless of whether the
e?ntegration is performed in the direction of the heat flow or in
he opposite direction. In this respect it is interesting to men-
ion that if different temperatures are given and the integra-
'tion is carried out in the direction in which the temperatures
tend to be equal, then, once they are equgl to the ma-

hi : h ¢ h hine’s precisiop and the integration is carried out in the
numbers this problem does not show up. In fact the genergl,,,gjte direction, as initially done, we do not obtain differ-
methodology of perturbing the initial velocity at the high o temperatures

density region of the shock can be used to numerically gen- We have provided evidence that shows how different

Erate .th? zro;ilis forl fir}itg Macr]: rrllumgersk. lr?. 'Il;able IfV V(‘ﬁclasses of numerical methods may converge to different
ave included the calculations of the shock thickness for dity, oins \while for the present problem this is not important,
ferent Mach numbers. Finally, it is worth pointing out that

he local | £ th i L th h itical as far as velocity profiles are concerned, it is important in
the local topology of the Holiaet al. theory at the critical = ¢ ations where sensitivity to initial conditions is to be ex-

points is the same as the Navier-Stokes equations, that is, the 1eq. we also find that there are some numerical methods

upflow critical point(low density regiohis an unstable node ¢ are not locally “unstable” when the integration is car-

and the other one is a saddle. ried out in a direction opposite to that of the heat flux, mean-
ing that irreversibility of nature and local “instability” of the
numerical methods are in general not related.

mention that, as far as the numerical methods are concerne.
the numerical solution cannot be continued beyond the pO"}tur
at which the solution is very near its asymptotic values at th
low density region of the shock wave. In fact for lower val-
ues ofs than about 1.5 for the Navier-Stokes equations an
2.1 for the Holian theory, we get a floating point exception
which in our opinion is a result of the conditiag=0. Such

behavior is the result of takinlyl ;=< and for finite Mach

VI. DISCUSSION
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tant improvement over the Navier-Stokes equations. Our

point of departure was Grad’s moment method with a two-

temperature displaced Maxwellian as a weight function and

our goal is to obtain constitutive equations from the moment

equations. We showed that, if the first order Knudsen expan- Here we show how to evaluate the collision integrals.
sion of the moment equations is taken, it is possible to obtailConsider, for example, the expression frgiven by Eq.
constitutive relations for the heat flow, the viscous pressur¢30). Using Eq.(25) and the linear properties of the integral
tensor, and the temperature difference. This allows us teve obtain

close the conservation equations, providing us with a well

posed problem for shock waves. The idea is motivated by the

observation that the Navier-Stokes equations give a reason- kTﬁO)
able velocity profile for high Mach numbers and so pertur- E=[C§,C§]— il
bations around it could result in an improvement. To first m

order in the Knudsen number we find that the equations de- 1 _ ﬁO)
rived are not capable of providing the correct asymptotic ~ =[C;,C{]— —[CZ.¢f1+—— |
behavior for normal shock waves. In this respect, it should ¢

be pointed out that from the molecular dynamics results

[9,10] it is not clear that the asymptotic behavior for the

shock corresponds to that of a normal one since their resuli/e now show how to evaluafeCs,CZ]. For rigid spheres
are not given for a wide interval of distances. On the othemwe have thak (x,g) = o%/4 [26], whereo is the rigid sphere
hand, our calculations for the collision integrals are valid indiameter, then from Eqgl), (25), (26), and(27) we have

APPENDIX

1 kT
[Chl- Z[Ch.gl+ 7 [CR]

Gl (A
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n2 2/kT(O) -2 kTO) -1
[c2 ci]— 2 m ) ) f dcdc;deexp —mC3,/2kT|”)exd —m(CF, )/2kT{” Jexp( —mCZ/2kT|?)
x exf] —m(C?)/2kT?]gC% ex _mi_ 1 (Ci2+Cl?)—(C2,+C2) (A2)
1 1 g X 2k Tﬁo) T(o) X .
In terms of the center of mass and relative coordinates given by
C=G-g/l2, C'=G-¢g'/2, C;=G+g/2, C;=G+d'/2, (A3)
Eqg. (A2) can be written as
2 2 2 m 1 1 2 ’ 2 ’ 2 2
[C.C=Q | dr(Gy—g/2)°g) ex T 4K W_T(O) [g =Gl |[[(Cx+ G /2)“+ (G~ 0,/2)°] = (Cx+0,/2)
\
—(Gx—gx/Z)Z] , (Ad)
|
whergdf a;)ndQ have been introduced for simplicity; they +£ kTﬁm 312 2+ﬁ kTﬁo) 172 , 8
are given by >\ m kT8 \ " m | %[
dr=exp —mGZ/kT|®)exd —m(G+GJ)/kT{V] In terms of cylindrical coordinates given hy,=g, cos),
X expl — mgzl4kTﬁ ) g,=9, sin(¥), andg,, the integration ovep can readily be
done to obtain
Xexp{—m(gy+gy)/4kT(l°)]degde, kT(LO) kTﬁO) 1/2
I2=8w7’29(—>( ) f dgxf dg.g;
n20? (kT 2( kT mJ\ m
O= 3 . (A5) 2 0 2 0
327% m m x exp( —mgy/akT|”) exp( —mg? /4K T\
It is convenient to evaluate separately the two integrals % E kTﬁO) 4o kTﬁ 1 (A9)
andl, defined as 932 ™m 2 g+ 8gx

m{ 1 1 Using the change of variables given by= mgX/4kTﬁ
|1EQJ dr (Gy—042)* g exg — ym W— = andu,=mg?/4kT(”), we obtain forl,
1
=128r"20| — KT\ kTﬁO) S/ZJ duj duy u
X[0°— 1| [(Gu+ /2% +(Gy—g/2)’],  (A6) m m X y oy

><exp(—u>2<—u)2,) (u2+ cu)z,)l’2

3(kaj2 (ka)Z
X| = +2
m

2\ m

2
x|

uZ+2

|ZEQJ dr (GX—QX/Z)ZQ[(GX+QX/2)2+(GX—gX/Z)Z].

kijz
u
(A7)

m

(A10)
Note that[ C2,C2]=1,—1,.
To evaluatel ,, note that integration ovede gives 47  Using polar coordinates),=r cos() anduy,=r sin(g), we
since the integrand does not depend on the dispersion anglé¥tain
furthermore in the integration ové&, only the even parts in

. . . 0)\ 7/2
G, need to be considered and the resulting integrals can, 712 kT kTﬁ
readily be done since they are Gaussian, so we have =128 70 — = m m dr r dar sin ()

X , ) X[cog(6)+c sinz(a)]1/2exp(—r2)
m )Jdg exp(—mgX/4kTﬁ ) X [3/2+2r2cog(0) +2rcos(6)]. (A11)

|2=4’7TQ7T(

0)\ 5/2 . . . . .
3\m kTﬁ The integration over the radial coordinate can readily be
2 m done to obtain

xexd —m(g;+g7)/4kTV] g
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| 128777/29(kT(LO))2(kTﬁ0) " 15c2-26c+8 ¢ [1+\1-c
2= — = F(5¢)= + In
m m 241-0)* 2y1-¢ [1-1-c¢
35 _
X|zF(1e)—14F(3c) +6F(5c)|,  (Al2) c? 1++V1l-c

+ In
4(1-c)3?

1-\1-c]
1+ \/E]
1-1-c|

whereF(n,c) is defined as

C3

+ In
16(1-c)%?

(A14)

F(n,c)= fowde Sif(6) [co2(6) + ¢ sir(6)] 2
(A13)

F(n,c) can be obtained from tables of integrf®€] or com-

puter algebra, their explicit form is The limiting case of equal temperatures=1) [see Eq.

(A13)] gives F(1,1)=2, F(3,1)=4/3, andF(5,1)=16/15.

c 1++v1—c Using Egs.(A12) and (A5) we obtain thatl, for c=1 is
F(1c)=1+ In , given by
2V1l-c 1-v1-c
3—4c c 1++V1-c 314 , , —(KT|%?
F(3c)= - In lo|_,=ggn’0 N — (A15)
41-¢) 2y1-c |1-V1-c
c? 1+V1-c¢ . _
+ AL , Let us now evaluaté,, which from Eqs(A7) and(A5) is
8(1-¢) 1-Vi1-c given by

I1=Qf dG dg deexp(—mGZ/kT|”)exd —m(GJ+G2)/k TV Jexp( — mg?/4k T{V) (G, — g,/2)%g

% m
ex R

The integration over the center of mass coordinates can be done to obtain

1

TP 97| [(Gyt /2 *+ (G~ g/2)%]. (A16)
\

=a fd d e B (R [
7] dode e AT ak| o~ 7

e e

5/2 \/;

+_
4

ﬁ( kT|”

0)\ 3/2
kTﬁ ) 12

4 m x' 8 m X Ix | (AL17)

To evaluate the integration over the solid andé we first give some useful results.dfandg’ are the relative velocities

before and after the collision, then with the dispersion an§lessd e we have, using spherical coordinates dox 6, ¢ andg),
that:

0« =9 cod #)cog ¢)sin(&)cog €) — g sin( $)sin(&)sin(e) +gcog ¢)cod £)sin( ),
0y =0 cog 0)sin( ¢)sin(&)cog €) +gcod ¢)sin(&)sine) +gsin( 6)sin( ) cod &), (A18)
g, =9 cog #)cog &) —gsin( §)sin(§)cog e).

Note thatg- g’ =g? cosg) and||g|=]g’||, as expected. Using computer algebra we inferred by induction that for any natural
numbern we have

2n_ T 2m r2n__ Am n
f de ¢ —JO sin(§) d¢ JO de g, —(2n+1)92. (A19)

This relation can be checked out more easily by takirejong thez axis, for the purpose of integrating over the solid angle,
so thatg, =g sin() cosf), the resulting integrals can then be expressed in terngsfohctions, which are well knowf31].
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If we go back to Eq(A17) and make a series expansion of the second exponential that appears in it, interchanging the
summation and the integral we are led to

KTV (kT2 S 1 mo\"(1 "
_ 32N T L — ma2/ak T
Iy Q( m = (0 nZO n!(4kTﬁO)) (C 1) J dg g exp(—mg“/4kT")

f de ¢*" (kTﬁO)) (kﬁm) o+ 4( ﬁ()))@Jx ;g;zgi

While 0° is not defined, we have used the conventi8r-Q in order to simplify the previous equation, so that we do not write
explicitly the term corresponding to=0. Using Eq.(A19) to carry out the integration over the solid angle in E&§20) we

obtain
kTOV(KkTOVY2 2 1/ m \"1 n
ol e
m m i=o n!\ 4kT| c

(A20)

3 kTﬁo) 2 gzn 1 kTﬁo) g2n+2 1 kTﬁO) gzgzn 1 gzgzn+2
— ma/akT Oy 2 2 ol LK) O
Xf dg g exp(—mg/4akT.™) 2( m ) 2n+1 4\ "m J2n+3 4 m |2n+1 '8 2nv3 | AD
Using polar coordinatesg( 6, ¢), the integration over the angles gives
KTV (kT2 21 m o \"f1 "
| N Z_
169( m )( m| T n!(4kTﬁ°>) (c 1)
o 3 kTﬁO) 2 92n 1 kTﬁO) 92n+2 1 kTﬁO) 92n 1 92n+2
e ON R A ~ 2 il
XJO dg g'exp(—mg7/4kT”) 2( m | 2n+1 2l m J2n+3 12 m )2n+1 2a2n+3 A2
Finally, the integration oveg can be expressed in terms Ibffunctions so that
(0) 0)\ 1/2 £ 0)\ 2 (0)\ n+2 0)
160l <™ KT aes L[ RESAE KT\ 4kT2| " 2T (n+2)  1(kT|
1 m m &5 n! 4kTﬁ°> c 4\ m m 2n+1 8\ m
y 4kT “+3r(n+3)+_ kT|?\ [ 4kT( ”+3F(n+3)+i 4kTO\N 4T (n+4) a2
m 2n+3 24\ m m 2n+1 48 m 2n+3
Equation(A23) can be written as
KT\ (kT(V2 51 ['(n+2) TI'(n+3) 8 I'(n+3) 16 .['(n+4)
_ 712 Z(1-0c)" 12 - T2
=180 == ) T A (O 2 T8y t 3ot T3 s 0 A%
|
The limiting case of equal temperatures gives i (1—¢)" T'(n+4)
KT(0)\ 572 & nl (2n+3)’
Illc:l——n o\ ) (A25)
* n
- +
All the other integrals were evaluated in the same way; to 35=2 @ IC) L(n+3) ,
give the expression for them it is convenient to introduce the i-1 Nt (2n+1)(2n+3)
following definitions:
* (1 C)n F(n+2) 86=§ (1_C)n F(n+4)
ngl Gt D)” “ T n (2n+1)(2n+3)’
“ (1-¢)"T'(n+3) 4c 8,
= =6S;+4cS,+ S5+ 5 €75,
= nZl N (2n+3)’ =05 ACS T 3 St 305
_i (1-¢)"I'(n+3) 16c2  16¢3
=& T eneD; 7= 35F (1) ~56F (3,0) + 24F (5.¢) —6Cc— ——— ——,
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4c 8¢ . 1, (1-c)
13=25,+455+ 5 S+ =S, Er=Cm—my— 2(C™ 13— 14)+ 2(795= 76)—
74=5CF(1,c)+10cF(3,c)— 12cF(5,)— (14/3+8c)c?, Fa=)\1—)\2+ N3—As—5A5+5\g. (A27)
2 The seriesS; can be expressed in terms of hypergeometric
75=2C5+ 5= S;, series whose range of convergence is well known; this is
why the the reduced collision integrals shown in Fig. 2 have
n6=5F (1) —4F(3,¢)—2c—8c%3, been given for a restricted range of the temperature matio
Using F(1,1)=2, F(3,1)=4/3, andF(5,1)=16/15, and
N1=cC(155;+18cS,+6cS;+ 126%S,), noting that forc=1 all the seriesS; ,i=1, ... ,6, are zero,
we have from Eqs(A26)
303
)\2=7F(1,c) —252F(3,1)+108(5.¢) m=0, 7,=64/15, 73=0, 75,=—32/15,
—c(15+ 24c+24c?), 75=0, 76=0,
A3=2¢(3S;+6S,+2cS;+4cS,), A=0, A;=96/5, A3=0, A\4=-32/5, As=0,
N4=15F(1,c)+30F(3,c)—36F(5,c) —2¢c(7+12c), Ae=0. (A28)
Ns=C(6S,+4cSy), We finally conclude from Eq9A27) and (A26) that
Ng=15F(1c)— 12F(3C)—c(6+8c).  (A26) &l,_,=0, Ef|_=-325 T¢l_= ‘64/5’(A29)
Then the expressions for the reduced collision integrals
given by Eqs(34) and (35) are given by which are the values that reproduce the Chapman-Enskog
expressions for the transport coefficients for equal tempera-
& = 15— 16, tures.
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