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Two kinetic temperature description for shock waves
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A two kinetic temperature displaced Maxwellian is used as the weight function for a Hermite expansion of
the distribution function. The expansion is cut up to fourteen moments following Grad’s theory. The moment
equations are used to derive under a Knudsen type expansion what one may call two-temperature Navier-
Stokes equations~2T-NS!. The 2T-NS equations are then solved numerically, for a plane shock wave, and a
comparison between Navier-Stokes, Holian theory, and results from molecular dynamics and Monte Carlo is
performed.@S1063-651X~98!10009-0#

PACS number~s!: 05.60.1w, 51.10.1y, 52.35.Tc
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I. INTRODUCTION

Shock wave phenomena provide a natural arena for hig
nonequilibrium situations in which several theories can
tested. Although most comparisons have been done for s
or intermediate Mach numbers@1–6#, with the advent of the
computer, simulations for Mach numbers of about 100 h
been reported@7–9#. Thus it seems interesting to study th
different theoretical approaches that have been advance
explain the structure of shock waves at high Mach numb
In this paper we concentrate on the simulations that w
done for the rigid sphere model at low density using mole
lar dynamics @9# and the direct simulation Monte Carl
method@7,9#. In this case the questions of what is the tr
interaction potential and what is the equation of state do
represent additional difficulties that need to be addres
since both are accurately known for the rigid sphere mode
the dilute regime. There are various recent references@9–16#
in the literature related to the shock wave problem that
different theories, thus reflecting the current interest in
problem. In this work we have focused on some aspect
the problem without trying to be exhaustive.

The Navier-Stokes equations have been used with rela
success to obtain velocity profiles for shock waves at h
Mach numbers@10#. Another theory that is even more su
cessful is the one advanced by Holianet al. @10#, which we
refer to as the Holian theory. It is based on a conjecture
as yet does not have a microscopic justification; the m
idea is to use a different temperature in the expression for
transport coefficients. In fact, the present investigation w
undertaken with the hope of providing its kinetic foundatio
To get a quantitative idea about the level of prediction of
Navier-Stokes equations, the reader may take a look at F
where a comparison of the theories mentioned previou
and the results of simulations~for the velocity profiles! can
be found. The reduced variables used are defined in Sec
As can be seen from the figure, while the Navier-Stok
theory gives a reasonable profile, the Holian theory gives
important improvement.

The idea of different temperature profiles in nonequil
rium situations is not new and has been used with succe
problems where there is an external field and an anisotrop
to be expected. Also, there are many fields where the ide
different temperatures has been applied@17–22#.
PRE 581063-651X/98/58~3!/3209~14!/$15.00
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In this work we use the 14-moment approximation
Grad’s solution to the Boltzmann equation focused on
taining constitutive relations that result in a correspond
Navier-Stokes regime with two temperatures that we refe
as the two-temperature Navier-Stokes theory~2T-NS!. The
equations have been solved numerically for a plane sh
wave as is also done for the Navier-Stokes and Holian eq
tions. A comparison with results from simulations is give
and several remarks concerning the comparison are don

In 1964 Holway@23# claimed that there is no solution fo
the moment equations in the case of shock waves, no m
how many terms are included in the Hermite polynom
expansion for the distribution function, for Mach numbe
greater than 1.851. Such a proof has been recently c
lenged by Weiss@11# concluding that there is no such restri
tion. In this work we focus on obtaining constitutive equ
tions for a two-temperature theory and, therefore,
previous remarks are not crucial. The question of why
Navier-Stokes equations, which can be derived from line
ized 13-moment Grad’s equations, give a solution for h
Mach numbers while the linearized Grad equations do n
remains a mystery that we will not attempt to solve here

In Sec. II we give the kinetic model and the variables th

FIG. 1. Velocity profileũ(s) vs s. Solid circles correspond to
the molecular dynamics calculations (Ma5134), dashed line cor-
responds to the Navier-Stokes equations (t050), and the solid line
to the Holian theory (t050). We recall for the reader that the MD
and DSMC yield similar results.
3209 © 1998 The American Physical Society
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we will use. Section III gives results concerning the cons
tutive equations for the two-temperature theory at the le
of the Navier-Stokes regime. In Sec. IV the equations to
solved for the shock wave problem are given and the Ho
conjecture is explained in detail. The numerical solution
the Navier-Stokes, Holian, and 2T-NS equations is done
Sec. V and Sec. VI is left for some concluding remarks.

II. EXPANSION OF THE DISTRIBUTION FUNCTION

We consider here a stationary plane shock wave propa
ing in a dilute hard sphere gas whose states are describe
the Boltzmann equation. If we take thex axis as the direction
of propagation of the wave, its mean velocity will be give
by u(r ,t)5u(x) i, and we assume that the mean kinetic e
ergy alongx (mkTi

(0)/2) is different from the mean kinetic
energy along the other axis (mkT'

(0)/2).
The zero order distribution function is given by a di

placed Maxwellian with two temperatures:

f ~0!~c,r ,t !5nS m

2pkT'
~0!D S m

2pkTi
~0!D 1/2

3exp~2mCx
2/2kTi

~0!!,

3exp@2m~Cy
21Cz

2!/2kT'
~0!#, ~1!

where c is the molecular velocity,u the mass velocity,C
[c2u the peculiar velocity,n the number density,k Boltz-
mann’s constant, andm the mass.Ti

(0) andT'
(0) are the par-

allel and perpendicular temperatures, respectively. The
perscript in the temperatures is to remind us that they
related to the Maxwellian~local equilibrium temperatures!.

With f (0)(c,r ,t) as the weight function, the Hermite mu
tidimensional orthogonal polynomials@H (s)(v)# can be gen-
erated in a straightforward way, and the distribution funct
can be expanded in terms of such a complete basis. H
@24#,

f ~c,r ,t !5 f ~0!~c,r ,t !S a~0!~r ,t !H ~0!~v!1ai
~1!~r ,t !H ~1!~v!

1
1

2!
ai j

~2!~r ,t !H i j
~2!~v!

1
1

3!
ai jk

~3!~r ,t !H i jk
~3!~v!1••• D , ~2!

where the components of the dimensionless velocity are
fined as

vx5S m

kTi
~0!D 1/2

Cx , vy,z5S m

kT'
~0!D 1/2

cy,z , ~3!

the quantitiesai 1 , . . . ,i s
(s) (r ,t) are the corresponding moment

which are given by

a . . .
~s! 5

1

nE f ~c,r ,t !H . . .
~s! dc. ~4!

The Hermite polynomials that we use in this work are
-
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H ~0!51,

H i
~1!5vi ,

H i j
~2!5vivj2d i j , ~5!

H i jk
~3!5vivjvk2~vid jk1vjd ik1vkd i j 1 !

A

and higher order ones, which are unnecessary to list@24#.
According to Grad@25# we use the approximation in

which the heat flow and the pressure tensor are the rele
physical moments needed in the description. This amount
taking a(s)(r ,t)50,;s>4 and in addition to assume, as
usual in the thirteen-moment approximation, that

åi jk
~3!H̊ i jk

~3!50. ~6!

The overcircle indicates that we are speaking of thecorre-
spondingtraceless tensor. It is convenient to introduce fu
ther simplifications corresponding to a situation prevailing
one-dimensional shock waves. First, sinceu5u(x) i we as-
sume that we have cylindrical symmetry. Furthermore,
suming that the density and mean velocity are given by
local Maxwellian, we will propose that

f 5 f ~0!~11 j̃ !. ~7!

The quantityj̃ measures the deviation from the Maxwellia
distribution function and can be expressed in terms of eit
the moments or the physical relevant variables, namely,

j̃5mxxS Cx
22

kTi
~0!

m D 1mxy~Cxcy1Cxcz!

1myyS c'
2 2

2kT'
~0!

m D 1myzcycz1uxCx

3S mCx
2

kTi
~0! 1

mc'
2

kT'
~0! 25D 1uy~cy1cz!S mCx

2

kTi
~0! 1

mc'
2

kT'
~0! 25D ,

~8!

wherec'
2 [C'

2 [cy
21cz

2 has been introduced in order to sim
plify the notation. Them ’s andu ’s are defined in the follow-
ing way:

mxx5
m

2kTi
~0!S Pxx

nkTi
~0! 21D ,

mxy5
mPxy

nk2Ti
~0!T'

~0! ,

myy5
m

2kT'
~0!S Pyy

nkT'
~0! 21D ,

myz5
mPyz

nk2T'
~0!2 ,
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ux5
m

5kTi
~0!F qx

nkT'
~0! 1

1

nkS 1

Ti
~0!

2
1

T'
~0!D QxG ,

uy5
m

5kT'
~0!F qy

nkT'
~0! 1

1

nkS 1

Ti
~0!

2
1

T'
~0!D QyG . ~9!

The pressure tensor (P), heat flux (q), andQ are given
by

P5E f ~c,r ,t !mCC dC,

q5E f ~c,r ,t !
m

2
C2C dC,

Q5E f ~c,r ,t !
m

2
Cx

2C dC. ~10!

Substitution of Eq.~1! in Eq. ~10! yields readily the expres
sion of the pressure in terms of the temperatures, name

p5 1
3 nkTi

~0!1 2
3 nkT'

~0! . ~11!

Further, the condition Tr(P)53p also implies that

mxx522S T'

Ti
D 2

myy . ~12!

The specific internal energy is also given by the usual
pression@26# so that using Eq.~1! we also get

E~x!5
3

2

kT~x!

m
, ~13!

where

T~x!5 1
3 Ti

~0!1 2
3 T'

~0! ~14!

is the total temperature. Finally it is important to menti
that, within the present approximation, we have the follo
ing relation betweenqx andQx :

qx5S 11
2

3

T'
~0!

Ti
~0!D Qx . ~15!

Notice that the cylindrical symmetry, which was take
into account in the expression forj̃ @Eq. ~8!#, has reduced the
number of variables. At the present level of description
have four variables that appear in the Maxwelli

(n,u,T'
(0) ,Ti

(0)) and 6 fluxes (P̊xx ,P̊yy ,P̊xy ,P̊yz ,qx , andqy).
Since Eq.~12! gives a relation betweenPxx and Pyy , we
have nine unknowns. The problem is now to obtain the eq
tions needed to solve for the unknowns, so that besides
conservation equations,which are granted due to the binar
collision hypothesis, we need constitutive equations for th
fluxes. This question will be undertaken in the next secti
-

-

e
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III. TRANSPORT EQUATIONS

We derive here the equations for the conserved varia
and the fluxes, starting from the Boltzmann equation,

] f

]t
1c•¹ r f 5J~ f , f !, ~16!

where J( f , f ) is the collision term whose explicit form is
given by

J~ f , f ![E dc1deS~x,g!g@ f ~c8,r ,t ! f ~c18 ,r ,t !

2 f ~c,r ,t ! f ~c1 ,r ,t !#, ~17!

where the primes denote the final velocities of the molecu
in the binary collision,S(x,g) is the differential cross sec
tion, g5uc2c1u the relative speed, andde denotes the inte-
gration over the solid angle@26#. The transport equation fo
an arbitrary functionC(c) is obtained from the Boltzmann
equation when we multiply it byC(c) and integrate in the
velocity space, so

E dcD~ f !C~c!5E dcJ~ f , f !C~c!, ~18!

whereD is a shorthand notation for the drift term in th
Boltzmann equation.

If c(c) corresponds to a summational invariant, we obt
the corresponding conservation equation@26#. For a station-
ary plane shock wave along thei direction, all the relevant
quantities depend only on thex coordinate and the conserva
tion equations can be integrated once@10# to give for the
conservation of mass:

r~x!u~x!5C1 , ~19!

the conservation of momentum

Pxx1r~x!u2~x!5C2 , ~20!

the energy conservation

r~x!@E~x!1 1
2 u2~x!#u~x!1u~x!Pxx1qx5C3 , ~21!

whereC1 ,C2 ,C3 are constants and the specific internal e
ergy is given by Eq.~13!. Equations~19!, ~20!, and ~21!,
mustbe supplemented by additional constitutive relations
Pxx andqx , which we now obtain.

For C(c)5(3m/2)Cx
2 , and assuming that the fluxes d

pend only onx, we obtain for the drift terms in the stationar
case

]

]x
$@Pxx~x!2Pyy~x!#u~x!13Qx~x!2qx~x!%

12Pxx~x!
]u~x!

]x
5E dc

3m

2
Cx

2J~ f , f !, ~22!

and usingC(c)5mCx
3/2 ~we prefer to use this function in

stead of the usualC(c)5mC2Cx/2 since the collision terms
can be evaluated more easily! we obtain for the drift term:
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]

]x
@u~x!Qx#1

3Pxx

2
u~x!

]u~x!

]x
13Qx

]u~x!

]x

1
]

]xF3kTi
~0!

m
Pxx2

3

2

nk2Ti
~0!2

m G5E dc
mCx

2

2
CxJ~ f , f !.

~23!

While it is in principle necessary to consider more functio
C to obtain equations for the other fluxes, it turns out th
they are not required if we consider the linear part~in the
fluxes! of the collision term, as will become clear later on

A. The collision terms

Our main objective is to obtain a generalization of t
Navier-Stokes equations when we have two temperature
the Maxwellian. With this idea in mind we do not study th
equations for the moments in their full generality, instead
want to obtain the corresponding constitutive relations.
order to achieve this objective we will consider a Knuds
type expansion of the moment equations. The main idea
consider that the fluxes represent small corrections to
distribution function, typically of the order of the Knudse
number, and so the nonlinear contributions from the flu
can be neglected if the Knudsen number is small enough.
when evaluating the collision term we will only consid
linear contributions in the fluxes.

Using Eqs.~7! and ~17! we obtain for the linearized col
lision term

E dcC~c!J~ f , f !u
L

5
1

2
@C~c!,1#1mxxFC~c!,S Cx

22
kTi

~0!

m D G
1mxy@C~c!,~Cxcy1Cxcz!#

1myyFC~c!,S c'
2 2

2kT'
~0!

m D G1myz@C~c!,cycz#

1uxFC~c!,CxS mCx
2

2kTi
~0! 1

mC'
2

2kT'
~0! 25D G

1uyFC~c!,~cy1cz!S mCx
2

2kTi
~0! 1

mC'
2

2kT'
~0! 25D G , ~24!

where @,# is a shorthand notation for the terms that cont
the collision dynamics,

@C~c!,F~c!#[E dcE dc1deS~x,g!g f ~0!~c,r ,t ! f ~0!

3~c1,r ,t !C~c!D!@F~c!#, ~25!

D!@F~c!#5exp@2D~f!#@F~c8!1F~c18!#

2@F~c!1F~c1!#, ~26!

andD(f) is given by
s
t

in

e
n
n
to
e

s
o,

D~f!5
m

2kS 1

Ti
~0!

2
1

T'
~0!D @C1x8

21Cx8
22C1x

2 2Cx
2#. ~27!

With C(c)5(3m/2)Cx
2 and C(c)5(m/2)Cx

2Cx it turns
out that all the collision integrals can be evaluated for
rigid sphere model, the details of which are given in t
Appendix. We therefore obtain

E dc
3m

2
Cx

2J~ f , f !u
L
5

3m

2
$jxx1mxxJ%, ~28!

where

jxx[
1

2
@Cx

2 ,1#, ~29!

and

J[FCx
2 ,S Cx

22
kTi

~0!

m D 2
1

c2S cy
22

kT'
~0!

m D G . ~30!

Equations~29! and ~30! give the relevant collision integral
and can be expressed in terms of the temperature ratio:

c[
T'

~0!

Ti
~0!

, ~31!

which measures the temperature asymmetry in the sys
For C(c)5(m/2)Cx

2Cx we have that

E dc
m

2
Cx

2CxJ~ f , f !u
L
5

m

2
uxGq , ~32!

where

Gq5FCx
3 ,CxS mCx

2

kTi
~0! 1

mC'
2

kT'
~0! 25D G . ~33!

Expressions for reduced collision integrals defined as

j!~c![
jxx

~kTi
~o!/m!3/2s2n2Ap

,

J!~c![
J

~kTi
~o!/m!5/2s2n2Ap

, ~34!

Gq
!~c![

Gq

~kTi
~0!/m!5/2s2n2Ap

, ~35!

can be found in the Appendix. All of them can be express
as a function of the ratio of the Maxwellian temperature
Figure 2 gives their behavior as a function ofc. Notice that
for c51 ~equal temperatures! their values are 0,232/5, and
264/5, respectively.

B. The constitutive relations

Direct substitution of the result for the collision term
given by Eq. ~28! in Eq. ~22! gives a way to obtain the
constitutive relation forPxx :
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]

]x
†@Pxx~x!2Pyy~x!#u~x!13Qx~x!2qx~x!‡

12Pxx~x!
]u~x!

]x
5

3m

2
$jxx1mxxJ%. ~36!

Following Grad @25#, in the left hand of the equation w
make the approximationPxx5nkTi

(0) , Pyy5nkT'
(0) and q

50 ~zero order expression for the fluxes in a Knudsen
pansion!. This approximation can be regarded as a way
obtain the first order correction in a Knudsen expansion
the fluxes, thus leading to

]

]x
@~nkTi

~0!2nkT'
~0!!u~x!#12nkTi

~0!
]u~x!

]x

5
3m

2
$jxx1mxxJ%. ~37!

Using the definition ofmxx we obtain that

Pxx5nkTi
~0!1

8n2k3Ti
~0!3

3m2 J21
]u~x!

]x

1
2

3m
J21

]

]x
@~nkTi

~0!2nkT'
~0!!u~x!#2jxxJ

21.

~38!

However, if f 5 f (0) is the two-temperature Maxwellian
which corresponds to zero transport coefficients that
J2150 or s5` ~zero mean free path!, we do not recover
nkTi

(0) . The reason is thatJ and jxx have the sames de-
pendence@see Eq.~34!#, so that in the limits→` the last
term of Eq.~38! gives a nonzero limiting value. To get th
correct limiting case it is necessary that the sum of the
two members terms in Eq.~38! is zero, which implies that
the pressure tensor is given by

FIG. 2. Collision integralsj! ~long dashed line!, J! ~solid line!,
and Gq

! ~small dashed line! as a function ofc5T'
(0)/Ti

(0) . For c
51 their values are 0,232/5, and264/5, respectively.
-
o
r

is

st

Pxx5nkTi
~0!1

8n2k3Ti
~0!3

3m2 J21
]u~x!

]x
. ~39!

Equation~39! is the generalization of the usual constitutiv
equation for one temperature, the second term is proportio
to the mean free path and represents a first order Knud
correction. The viscosity, which we denote byhxx , is then
given by

hxx52
2n2k3Ti

~0!3

m2 J21, ~40!

using the value ofJ for equal temperatures given at the e
of the preceding section, we conclude that for such a cas
have

h5
5m

16s2S kT

pmD 1/2

, ~41!

which is the first approximation in a Sonine expansion
the viscosity. For rigid spheres the exact value of the visc
ity is known @26# and is equal to 1.016 034 times Eq.~41!. If
this more accurate value for the viscosity is used, and a
the corresponding one for the thermal conductivity@see Eq.
~48!#, it turns out that there is a minor modification to th
solution of the Navier-Stokes equations~than with the first
Sonine expansion expression for the transport coefficien!.
The numerical calculations for the Navier-Stokes equatio
to be given later, were obtained with the first order Son
expansion expression for the transport coefficients, tha
using Eqs.~41! and ~48!.

On the other hand, the condition that the last two terms
Eq. ~38! is zero implies a relationship between the tempe
ture gradients and the collision integraljxx , which is itself a
function of Ti

(0) andT'
(0) ,

]

]x
@~nkTi

~0!2nkT'
~0!!u~x!#5

3m

2
jxx . ~42!

Hence, Eq.~42! may be regarded as a constitutive relati
for the temperatures. When there are no gradients forTi

(0) ,
T'

(0), andu, we infer from Eq.~42! and Fig. 2 that the Max-
wellian temperatures should be equal. We will say mo
about Eq.~42! later on.

To obtain the constitutive relation for the heat flux we fir
note that the equation for conservation of momentum can
written as

u
]u

]x
52

1

r

]Pxx

]x
. ~43!

Using Eqs.~32! and ~43!, Eq. ~23! can be rewritten as

]

]x
@u~x!Qx#1

3Pxx

2 F2
1

r

]Pxx

]x G13Qx

]u~x!

]x

1
]

]xF3kTi
~0!

m
Pxx2

3

2

nk2Ti
~0!2

m G5
m

2
uxGq . ~44!

If, as was done to obtain the viscosity, in the left hand of
Eq. ~44! we make the approximationPxx5nkTi

(0) and Q
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50 ~zero order expression for the fluxes in a Knudsen
pansion!, then using the expression forux we have from Eq.
~44! that

qx5
3

2
AnkTi

~0!
k

m

]

]x
Ti

~0! , ~45!

where

A5
kTi

~0!

m

10nkT'
~0!

m

1

Gq

1

11~c21!/~112c/3!
. ~46!

Equation ~45! is a generalization of Fourier’s law, with
thermal conductivity given by

l52
15n2

Gq
S kTi

~0!

m D 2kT'
~0!

m

k

11~c21!/~112c/3!
, ~47!

which in the limit of equal temperatures (Gq
!5264/5) be-

comes the usual first order Sonine expansion expression
the thermal conductivity:

l5
75k

64s2F kT

pmG1/2

. ~48!

The exact value for the rigid spheres model, in the Chapm
Enskog expansion@26#, is 1.025 13 times Eq.~48!.

Equations~39!, ~42!, and~45! are the main results of thi
work. Together with the expressions for the collision in
grals given in the Appendix, they provide the constituti
relations needed to close the conservation equations f
two-temperature theory.

At the present level of approximation we have a closed
of equations for the variablesn, u, Ti

(0) , T'
(0) , Pxx , andqx .

That is, we have three equations for the conserved varia
@Eqs. ~19!, ~20!, and ~21!# and three constitutive equation
@Eqs.~39!, ~42!, and~45!#. We are now in a position to solv
numerically the equations for a plane shock wave using
proper dimensionless variables.

IV. THE REDUCED EQUATIONS

In order to compare with previous work it is convenient
use the same dimensionless variables as Holianet al. @10#:

s[x/ l , l 5
5m

12r0s2Ap
, t

i
~s![

kTi
~0!~x!

mu0
2 ,

t
'
~s![

kT'
~0!~x!

mu0
2 , ũ[u/u0 , t0[

P0

r0u0
2 , ~49!

wherel is the ‘‘mean free path’’ and the origin is chosen
such a way that the velocity at this point is equal to (u1
1u0)/2. The subscript ‘‘0’’ refers to the asymptotic values
the low density region of the shock wave whereas the s
script ‘‘1’’ refers to the denser asymptotic values of t
shock wave. In particularP0 is the pressure in the low den
sity part of the shock. The pressures, temperatures, and
locities at the asymptotic regions of the shock (P0 , P1 , T0 ,
T1 , u0 , u1), are of course related by the Rankine-Hugon
-

for
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equations, which can be obtained from the conserva
equations, in terms of the previous reduced variables, t
read

ũ15 5
4 t01 1

4 , t15 7
8 t01 3

16 2 5
16 t0

2 , ũ051. ~50!

Thus, givent0 the reduced values of the velocity and tem
perature at the high density part of the shock can be de
mined. We define the Mach number (Ma) @9# as the velocity
of the shock wave divided by the sound velocity, both qua
tities being evaluated at the low density part of the shock,
ratio of the specific heat at constant pressure divided by
one at constant volume is taken to be 5/3, so that we ob
for the Mach number

Ma5A 3

5t0
. ~51!

In terms of these variables, using the constitutive eq
tions for the pressure tensor and the heat flux@Eqs.~39! and
~45!#, and using the conservation equations@Eqs.~19!, ~20!,
and ~21!# we obtain the following set of three equations:

t
i

ũ~s!
1

32

5

At
i
~s!

J!~c!

]

]s
u~s!5t0112ũ~s!,

]

]s
t

i
~s!2

]

]s
t

'
~s!5

5

8

t
i
~s!3/2j!~c!

ũ~s!2
, ~52!

1

2
t

i
~s!1t

'
~s!1

36ct
i
~s!

Gq
!~c!@11~c21!/~112c/3!#

]

]s
t

i
~s!

5
3

2
to1

1

2
@12ũ~s!#21t0@12ũ~s!#.

The first of Eqs.~52! is the reduced form of conservation o
momentum, the second one is the constitutive relation for
temperature difference, and the last one is the equation
energy conservation. We have then a closed system of t
equations with three unknowns.

For the single temperature case (t
i
5t

'
5t) Eqs.~52! re-

duce as it should be to the dimensionless Navier-Sto
equations:

t~s!

ũ~s!
2t1/2~s!ũ8~s!5t0112ũ~s!,

3
2 t~s!2 45

16 t1/2~s!t̃8~s!5 3
2 t01 1

2 @12ũ~s!#21t0@12ũ~s!#.
~53!

The Holian@10# conjecture can now be explained in terms
the previous reduced Navier-Stokes equations. Holianet al.
noticed that the temperature defined asnkTi[Pxx is in gen-
eral different from the temperature that appears in the M
wellian (T) and also in the expression for the transport c
efficients. Hence, they proposed that the temperature in
expression of the transport coefficients should be replace
Ti , which, in the notation used here, amounts to replac
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At with Aũ(t0112ũ) in the Navier-Stokes equations. I
this way they obtained that Eqs.~53! now become

t~s!

ũ~s!
2Aũ~t0112ũ!ũ8~s!5t0112ũ~s!

3
2 t~s!2 45

16
Aũ~t0112ũ!t̃8~s!5 3

2 t01 1
2 @12ũ~s!#2

1t0@12ũ~s!#. ~54!

They were then able to obtain a closed system of equati
which they solved using finite difference methods. For ea
of the three versions of equations that we have describe
2T-NS @Eq. ~52!#, NS @Eq. ~53!#, and HO @Eq. ~54!#—we
must give initial or boundary conditions. In order to com
pare, we have taken the same initial conditions as Ho
et al. @10# and solved the equations using three differe
methods, as will be explained below. It should be emp
sized that Eqs.~52! are a result obtained solely from th
constitutive relations for two temperatures and thus repre
an important result of this work.

V. NUMERICAL CALCULATIONS

The molecular dynamics data with which we compa
were taken from the work by Holianet al. @10# who did not
report the Mach (Ma) number to which the data correspon
although since they refer to the molecular dynamics d
reported by Salomons and Mareschal@9# for a Mach number
value of 134 we infer that the Mach number, as defined
Salomons and Mareschal@9#, is equal to 134. In order to
compare with results of molecular dynamics, which incide
tally gives identical results to the direct simulation Mon
Carlo method@9#, we follow Holianet al. @10# and make the
simplifying assumption thatt050, for Ma5134 we obtain
from Eq. ~51! that t0'3.3431025, we would like to stress
that the conditiont050 is only a reasonable and simplifyin
assumption@10#. Hence, the Rankine-Hugoniot equatio
imply the following asymptotic values:

ũ051, ũ151/4, t153/16. ~55!

Thus the preceding equations~52!, ~53!, and~54! are simpli-
fied. Holian et al. @10# proposed to give initial conditions
with valuesũi51/411026,t i53/16 and then found the ini
tial ‘‘time’’ si that gave the correct value (0.625) ofũ at the
origin. The same procedure will be followed here. Holi
et al. also mentioned that the finite difference method us
by them was unstable when the integration was done
direction opposite to that of the heat flow, a point that will
analyzed later on, so we also started at the high density
gion of the shock wave. It is interesting to notice that if t
exact asymptotic values of the variables are given, all th
theories give the same constant result that corresponds t
Euler solution. The reason for this is that all three theor
give derivatives foru and the temperatures that are ze
when the exact asymptotic values are used and since
numerical methods use the information of the derivatives
estimate the next point, it is clear that they will give the sa
value for the next point and so on.
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To solve the three different set of equations we first ma
some calculations for the Navier-Stokes equations us
three different methods in order to see if the solution w
dependent on the method. The three methods are Ad
~AD!, backward differentiation formula~BDF!, and Runge-
Kutta ~RK! @27#. The tolerance was varied to infer the e
pected accuracy in each of the numerical methods. It tu
out that only for the BDF method the tolerance can be var
to about the smallest positive model number, which for
machine used is about 2.23102308. For the other two meth-
ods~AD and RK! the minimum tolerance that can be used
about 10215; for smaller tolerances both methods are n
able to provide the solution to the requested tolerance.

For the RK method three different variants of order
accuracy 3, 5, and 8 were used. Only results for the met
RK~7-8! of accuracy 8 are reported. The results of our c
culations are given in Table I.

The AD method was used to determine the initial ‘‘time
for the previous mentioned initial conditions, so that the n
merical solution gave the correct value ofũ at the origin
~0.625! to a certain tolerance. The initial ‘‘time’’ found in
this way is si52.488 513 for the Navier-Stokes equation
This value of si together with ũi50.250 006 andt i
50.1875 were used to solve the Navier-Stokes equati
with the other two methods~RK and BDF!, and the results
are given in Table I.

From the results of Table I we see that the results from
RK~7-8! method are rather similar to the AD method. Th
AD method givesũ(0)50.625 000 30 with an estimated ac
curacy of few parts in 109, whereas for the RK~7-8! we have
ũ(0)50.625 000 30 with again about the same estimated
curacy as for the AD method. Thus, we are tempted to c
clude that with any of the two methods@RK~7-8!,AD# the
numerical solution is the same with an estimated accurac
few parts in 109. The results from the BDF method show th
the numerical solution has an estimated accuracy of 16
its, which is the maximum accuracy that can be obtain
with double precision, and that the method has a better
havior as the tolerance is varied. An accuracy of 16 dig
seems too good to be true and later on we will come to
point. However, the difference between the BDF method a
the other two is about 4 parts in 104, which seems to imply
that the methods are converging to different values. It sho
be pointed out that in the graphs for the velocity profil
given by Holianet al. @10# this difference cannot be noticed
but in problems in which sensitivity to initial conditions is t
be expected, it can be important.

We have made an analysis to investigate the ‘‘stabilit
of the methods when the integration is done in a direct
opposite to the heat flow. Let us examine the Adams’ in
gration scheme when we integrate from the hot side of
shock wave to the cold part. In Table II the Navier-Stok
equations are integrated from different initial ‘‘times’’ to dif
ferent final values with the AD method. In row ‘‘a’’ of Table
II we see the initial values (si , ũi , andt i), discussed pre-
viously, and the corresponding final values (sf , ũf , andt f).
In row ‘‘c’’ of the same table we see that the initial value
s is taken to besf a , that is, the final value ofs that appears
in row ‘‘a’’ ( sf a50). The initial velocity and temperatur
are taken as their final values in row ‘‘a’’ of Table II. In
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TABLE I. Solution of the reduced Navier-Stokes equations ats50 with three different methods an
different tolerances. The initial values are given in row~a! of Table II and are the same for the three metho
used.

Tolerance ũ(0) t(0)

Adams method
1029 0.624 963 315 174 621 1 0.125 637 756 970 500 7
10210 0.624 997 997 208 800 0 0.125 629 385 120 289 6
10212 0.625 000 281 414 129 2 0.125 628 833 711 147 2
10213 0.625 000 300 794 112 1 0.125 628 829 032 846 6
10214 0.625 000 301 988 302 6 0.125 628 828 744 566 4
10215 0.625 000 302 068 455 9 0.125 628 828 725 217 3

RK~728! method
1029 0.625 000 014 402 597 9 0.125 628 898 167 095 5
10211 0.625 000 156 383 882 5 0.125 628 863 893 462 5
10213 0.625 000 302 077 649 8 0.125 628 828 722 997 6
10214 0.625 000 302 079 943 1 0.125 628 828 722 444 2
10215 0.625 000 302 080 741 2 0.125 628 828 722 251 5

BDF method
10222 0.625 322 569 829 112 1 0.125 550 997 767 003 2
10223 0.625 322 569 829 187 0 0.125 550 997 766 985 1
10224 0.625 322 569 829 182 8 0.125 550 997 766 986 2
10228 0.625 322 569 829 182 8 0.125 550 997 766 986 2
102307 0.625 322 569 829 182 8 0.125 550 997 766 986 2
to
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other words, given the initial valuessi52.488 513, ũi
50.250 006, andt i50.1875 we integrate the NS equation
s50 and then use the values found as initial values
integrate tos52.488 513. The results of Table II show th
there is a difference from the expected valuesũi
50.250 006 andt i50.1875), but the difference is reall
marginal and can be understood in terms of the round
error. Our conclusion is that there is a range in which the
method is not unstable when the integration is carried ou
a direction contrary to the heat flow. So, irreversibility a
local ‘‘instability’’ of the numerical methods are not in gen
eral related.

We can now analyze the behavior of the solution
larger values ofs and integrate the NS equations tos54.5.
In row ‘‘b’’ of Table II we start with the initial values;s
52.488 513,ũi50.250 006,t i50.1875 and integrate tos
54.5. We see that the final value ofũ is greater than its
value ats52.488 513, which means that the profile is no
d

ff

in

r

-

monotonic. The results of row ‘‘d’’ in Table II show that th
accuracy of the method starts to deteriorate; nevertheless
conclusion of a nonmonotonic profile is true, as can
shown by integrating to a lower value ofs. We interpret this
fact as being a result of the approximation of using init
values instead of boundary ones as explained previously

We have investigated the ‘‘stability’’ of the BDF metho
in the same way as described previously for the AD meth
but the results are not shown in the tables. We found
initial time (si52.487 856) so that we obtained approx
mately the correct value of the velocity profile at ze
@ ũ(0)'0.625 000 049#. Using the values obtained ats50
we integrate tos!52.487 856 to predict a value for the ve
locity profile of ũ(s!)'0.250 003 4, which should be com
pared with the initial value given (ũ50.250 006). We con-
clude that an accuracy of the method of a few parts in 107 is
probably a more reasonable expectation. Nevertheless,
not enough to explain the different values obtained with
other two methods.
toler-

566

2

53

4

TABLE II. Numerical solution of the reduced Navier-Stokes equations with the Adams method, a
ance of 10214, and different initial values.

si ũi
t i sf ũf

t f

a 2.488 513 0.250 006 0.1875 0.0 0.625 000 301 988 303 0.125 628 828 744

b sia ũia
t ia 4.5 0.250 044 358 523 472 0.187 532 170 949 70

c sf a ũf a
t f a 2.488 513 0.250 006 000 000 343 0.187 500 000 000 2

d sf b ũf b
t f b 0.0 0.624 999 884 960 198 0.125 628 929 415 13
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TABLE III. Numerical solution of the reduced Holian equations with the Adams method, a toleran
10215, and different initial values.

si ũi
t i sf ũf

t f

a 2.674 459 0.250 006 0.1875 0.0 0.625 000 097 246 471 7 0.125 628 878 169

b sia ũia
t ia 4.5 0.250 030 127 377 060 2 0.187 521 849 729 052

c sf a ũf a
t f a 2.674 459 0.250 006 000 000 020 9 0.187 500 000 000 01

d sf b ũf b
t f b 0.0 0.625 000 179 401 722 6 0.125 628 858 336 972
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For the Holian equations, the initial ‘‘time’’ was dete
mined so that with the initial conditions mentioned befo
the solution ats50 was approximatelyũ50.625; in row
‘‘a’’ of Table III the initial conditions and final results can b
found. We have done similar calculations as mentioned
fore and similar conclusions can be obtained from the ta
there is a region in which the equations can be integrate
a direction opposite to the heat flow without having ‘‘inst
bility’’ of the method and the velocity and temperature pr
files are nonmonotonic.

For the 2T-NS theory similar calculations can be done
it is not necessary to do them in order to obtain the conc
sion that the theory does not give the correct asympt
behavior for different temperatures. In fact from the cons
tutive relation for the temperatures given by Eq.~42! and
Fig. 2 the conclusion can be obtained. Suppose thats
50.0 we haveTi

(0).T'
(0) , that is,c,1, from Fig. 2 we see

thatj!,0 and from Eq.~42! we see that the variation of th
temperature difference is negative so when integrating
higher values ofs the difference will decrease. However,
we integrate to values lower thans50.0 the situation is just
the opposite and we will have that the difference will i
crease, but the asymptotic behavior for a normal shock w
is that the asymptotic states correspond to equilibrium, so
2T-NS equations cannot give this behavior. It should
pointed out that if equal temperatures are taken then the
sults of the 2T-NS equations are the same as the Nav
Stokes equations, so the 2T-NS equations do not give a
thing new for normal shock waves. The idea that a tw
temperature displaced Maxwellian can offer an improvem
to the Navier-Stokes equations is not true if only the fi
correction in the Knudsen expansion is considered. The c
clusion is valid only for normal shock waves although t
2T-NS theory developed here could find applications in ot
situations.

We have calculated the shock wave thickness (l
ST

),
which is defined as@10#

l
ST

[
u12u0

u8~0!
5

~ ũ121! l

ũ8~0!
, ~56!

obtaining that, usingMa5134, for the Navier-Stokes equa
tions and the Holianet al. theory it has values of 1.53l and
2.09 l , respectively, and for the molecular dynamics simu
tions its value is equal to 2.35l @10#. While the shock thick-
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ness has been used in the past to compare the resul
simulations or experiment with the results of continuu
theories, it must be pointed out that a more stringent
would be to compare the distribution function itself
pointed out by Bird@7#. However, there is an intermediat
option of comparing the profiles, which is the one used he
In this respect, it should be pointed out that while the the
advanced by Holianet al. represents an important improve
ment over the Navier-Stokes equations, there is room to
prove the temperature profiles that are shown in Fig. 3.

As a test of our numerical calculations for low Mac
numbers we have compared the maximum slope shock th
ness (D) as defined by Gilbarg and Paolucci@28#. Recently
Ruggeri @29# has recalculated Gilbarg and Paolucci valu
for a soft sphere model~power law potential!, apparently not
for the rigid sphere case, for which the temperature dep
dence of the transport coefficients goes likeTs, with s
50.816, obtaining good agreement. Our calculations
l 0 /D, where l 0 is the mean free path@28#, for the rigid
sphere model are the same as the values reported by Gi
and Paolucci atMa51.2, but are 0.7% and 1.8% higher tha
their values forMa52.0 andMa53.0, respectively. Appar-
ently they had problems in calculating the maximum slo
shock thickness for Mach numbers greater than 3 for
rigid sphere model and for a soft sphere model withs
50.816, however, Ruggeri reported numerical calculatio
up to Ma511 in the last case.

With respect to the conditiont050 we would like to

FIG. 3. Temperature profilet(s) vs s. Solid circles correspond
to the molecular dynamics calculations (Ma5134), dashed line
corresponds to the Navier-Stokes equations (t050), and the solid
line to the Holian theory (t050). We recall for the reader that th
MD and DSMC yield similar results.
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mention that, as far as the numerical methods are concer
the numerical solution cannot be continued beyond the p
at which the solution is very near its asymptotic values at
low density region of the shock wave. In fact for lower va
ues ofs than about 1.5 for the Navier-Stokes equations a
2.1 for the Holian theory, we get a floating point exceptio
which in our opinion is a result of the conditiont050. Such
behavior is the result of takingMa5` and for finite Mach
numbers this problem does not show up. In fact the gen
methodology of perturbing the initial velocity at the hig
density region of the shock can be used to numerically g
erate the profiles for finite Mach numbers. In Table IV w
have included the calculations of the shock thickness for
ferent Mach numbers. Finally, it is worth pointing out th
the local topology of the Holianet al. theory at the critical
points is the same as the Navier-Stokes equations, that is
upflow critical point~low density region! is an unstable node
and the other one is a saddle.

VI. DISCUSSION

As mentioned in the Introduction, the present resea
was initiated with the hope of providing a theoretical ba
for the Holian conjecture, which is known to give an impo
tant improvement over the Navier-Stokes equations. O
point of departure was Grad’s moment method with a tw
temperature displaced Maxwellian as a weight function a
our goal is to obtain constitutive equations from the mom
equations. We showed that, if the first order Knudsen exp
sion of the moment equations is taken, it is possible to ob
constitutive relations for the heat flow, the viscous press
tensor, and the temperature difference. This allows us
close the conservation equations, providing us with a w
posed problem for shock waves. The idea is motivated by
observation that the Navier-Stokes equations give a rea
able velocity profile for high Mach numbers and so pert
bations around it could result in an improvement. To fi
order in the Knudsen number we find that the equations
rived are not capable of providing the correct asympto
behavior for normal shock waves. In this respect, it sho
be pointed out that from the molecular dynamics resu
@9,10# it is not clear that the asymptotic behavior for th
shock corresponds to that of a normal one since their res
are not given for a wide interval of distances. On the ot
hand, our calculations for the collision integrals are valid

TABLE IV. Shock thickness for the rigid sphere model as
function of the Mach number for the Navier-Stokes~NS! equations
and the Holianet al. theory ~HO!.

Ma lST/ l (NS) lST/ l (HO) Ma lST/ l (NS) lST/ l (HO)

1.2 13.749 13.897 8.0 1.616 2.160

2.0 3.323 3.706 10.0 1.584 2.134

3.0 2.208 2.680 134 1.528 2.087

5.0 1.757 2.282 ` 1.528 2.087
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the range 0,T'
(0),2Ti

(0) , the upper limit may possibly be
extended if the analytic continuation to the hypergeome
series is used. Nevertheless, we do not think that such
extension can change our conclusion about the asymp
behavior.

The Holian conjecture gives higher values for the tra
port coefficients, viscosity, and thermal conductivity, th
the ones corresponding to the usual Navier-Stokes reg
For c,1, wherec5T'

(0)/Ti
(0) , the 2T-NS theory predicts a

higher value for the viscosity while the thermal conductiv
is lower than the corresponding Navier-Stokes resu
whereas in the casec.1 the situation is just the opposite
For c51 the 2T-NS theory gives identical results as t
Navier-Stokes equations. In this case the solution to
2T-NS equations is stable in the sense that once the temp
tures are equal they remain equal regardless of whether
integration is performed in the direction of the heat flow or
the opposite direction. In this respect it is interesting to m
tion that if different temperatures are given and the integ
tion is carried out in the direction in which the temperatur
tend to be equal, then, once they are equal~up to the ma-
chine’s precision! and the integration is carried out in th
opposite direction, as initially done, we do not obtain diffe
ent temperatures.

We have provided evidence that shows how differe
classes of numerical methods may converge to differ
points. While for the present problem this is not importa
as far as velocity profiles are concerned, it is important
situations where sensitivity to initial conditions is to be e
pected. We also find that there are some numerical meth
that are not locally ‘‘unstable’’ when the integration is ca
ried out in a direction opposite to that of the heat flux, mea
ing that irreversibility of nature and local ‘‘instability’’ of the
numerical methods are in general not related.
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APPENDIX

Here we show how to evaluate the collision integra
Consider, for example, the expression forJ given by Eq.
~30!. Using Eq.~25! and the linear properties of the integr
we obtain

J5@Cx
2 ,Cx

2#2
kTi

~0!

m
@Cx

2,1#2
1

c2 @Cx
2 ,cy

2#1
kT'

~0!

c2m
@Cx

2,1#

5@Cx
2 ,Cx

2#2
1

c2 @Cx
2 ,cy

2#1
12c

c

kTi
~0!

m
@Cx

2,1#. ~A1!

We now show how to evaluate@Cx
2 ,Cx

2#. For rigid spheres
we have thatS(x,g)5s2/4 @26#, wheres is the rigid sphere
diameter, then from Eqs.~1!, ~25!, ~26!, and~27! we have
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@Cx
2 ,Cx

2#5
n2s2

32p3S kT'
~0!

m D 22S kTi
~0!

m D 21E dcdc1deexp~2mC1x
2 /2kTi

~0!!exp@2m~C1'
2 !/2kT'

~0!#exp~2mCx
2/2kTi

~0!!

3exp@2m~C'
2 !/2kT'

~0!#gCx
2H expF2

m

2kS 1

Ti
~0!

2
1

T'
~0!D G ~C1x8

21Cx8
2!2~C1x

2 1Cx
2!J . ~A2!

In terms of the center of mass and relative coordinates given by

C5G2g/2, C85G2g8/2, C15G1g/2, C185G1g8/2, ~A3!

Eq. ~A2! can be written as

@Cx
2 ,Cx

2#5VE dt~Gx2gx/2!2gH expF2
m

4kS 1

Ti
~0!

2
1

T'
~0!D @gx8

22gx
2#G @~Gx1gx8/2!21~Gx2gx8/2!2#2~Gx1gx/2!2

2~Gx2gx/2!2J , ~A4!
y

g

ca

be
wheredt and V have been introduced for simplicity; the
are given by

dt[exp~2mGx
2/kTi

~0!!exp@2m~Gy
21Gy

2!/kT'
~0!#

3exp~2mgx
2/4kTi

~0!!

3exp@2m~gy
21gy

2!/4kT'
~0!#dGdgde,

V[
n2s2

32p3S kT'
~0!

m D 2S kTi
~0!

m D . ~A5!

It is convenient to evaluate separately the two integralsI 1
and I 2 defined as

I 1[VE dt ~Gx2gx/2!2 g expF2
m

4kS 1

Ti
~0!

2
1

T'
~0!D

3@gx8
22gx

2#G @~Gx1gx8/2!21~Gx2gx8/2!2#, ~A6!

I 2[VE dt ~Gx2gx/2!2g@~Gx1gx/2!21~Gx2gx/2!2#.

~A7!

Note that@Cx
2 ,Cx

2#5I 12I 2.
To evaluateI 2 , note that integration overde gives 4p

since the integrand does not depend on the dispersion an
furthermore in the integration overGx only the even parts in
Gx need to be considered and the resulting integrals
readily be done since they are Gaussian, so we have

I 254pVpS kT'
~0!

m D E dg exp~2mgx
2/4kTi

~0!!

3exp@2m~gy
21gy

2!/4kT'
~0!# gF3Ap

2 S kTi
~0!

m D 5/2
les,

n

1
Ap

2 S kTi
~0!

m D 3/2

gx
21

Ap

8 S kTi
~0!

m D 1/2

gx
4G . ~A8!

In terms of cylindrical coordinates given bygy5g'cos(u),
gz5g' sin(u), andgx , the integration overu can readily be
done to obtain

I 258p7/2VS kT'
~0!

m D S kTi
~0!

m D 1/2E
2`

`

dgxE
0

`

dg'g'

3exp~2mgx
2/4kTi

~0!!exp~2mg'
2 /4kT'

~0!!

3gF3

2S kTi
~0!

m D 2

1
1

2S kTi
~0!

m D gx
21

1

8
gx

4G . ~A9!

Using the change of variables given byux5mgx
2/4kTi

(0)

anduy5mg'
2 /4kT'

(0) , we obtain forI 2

I 25128p7/2VS kT'
~0!

m D 2S kTi
~0!

m D 3/2E
2`

`

duxE
0

`

duy uy

3exp~2ux
22uy

2! ~ux
21cuy

2!1/2

3F3

2S kTi
~0!

m D 2

12S kTi
~0!

m D 2

ux
212S kTi

~0!

m D 2

ux
2G .

~A10!

Using polar coordinates,ux5r cos(u) and uy5r sin(u), we
obtain

I 25128p7/2VS kT'
~0!

m D 2S kTi
~0!

m D 7/2E
0

`

dr r E
0

p

dur 2sin ~u!

3@cos2~u!1c sin2~u!#1/2exp~2r 2!

3@3/212r 2cos2~u!12r 4cos4~u!#. ~A11!

The integration over the radial coordinate can readily
done to obtain
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I 25128p7/2VS kT'
~0!

m D 2S kTi
~0!

m D 7/2

3F35

4
F~1,c!214F~3,c!16F~5,c!G , ~A12!

whereF(n,c) is defined as

F~n,c!5E
0

p

du sinn~u! @cos2~u!1c sin2~u!#1/2.

~A13!

F(n,c) can be obtained from tables of integrals@30# or com-
puter algebra, their explicit form is

F~1,c!511
c

2A12c
ln F11A12c

12A12c
G ,

F~3,c!5
324c

4~12c!
1

c

2A12c
ln F11A12c

12A12c
G

1
c2

8~12c!3/2 ln F11A12c

12A12c
G ,
F~5,c!5
15c2226c18

24~12c!2 1
c

2A12c
ln F11A12c

12A12c
G

1
c2

4~12c!3/2 ln F11A12c

12A12c
G

1
c3

16~12c!5/2 ln F11A12c

12A12c
G . ~A14!

The limiting case of equal temperatures (c51) @see Eq.
~A13!# gives F(1,1)52, F(3,1)54/3, andF(5,1)516/15.
Using Eqs.~A12! and ~A5! we obtain thatI 2 for c51 is
given by

I 2u
c51

5
314

15
n2s2ApS kT

m D 5/2

. ~A15!

Let us now evaluateI 1 , which from Eqs.~A7! and~A5! is
given by
tural

le,
I 15VE dG dg deexp~2mGx
2/kTi

~0!!exp@2m~Gy
21Gz

2!/kT'
~0!#exp~2mg2/4kT'

~0!!~Gx2gx/2!2g

3expF2
m

4kS 1

Ti
~0!

2
1

T'
~0!D gx8

2G @~Gx1gx8/2!21~Gx2gx8/2!2#. ~A16!

The integration over the center of mass coordinates can be done to obtain

I 15VS kT'
~0!

m DpE dg de exp~2mg2/4kT'
~0!!expF m

4kS 1

Ti
~0!

2
1

T'
~0!D gx8

2GgF3Ap

2 S kTi
~0!

m D 5/2

1
Ap

4 S kTi
~0!

m D 3/2

gx8
2

1
Ap

4 S kTi
~0!

m D 3/2

gx
21

Ap

8 S kTi
~0!

m D 1/2

gx8
2gx

2G . ~A17!

To evaluate the integration over the solid anglede, we first give some useful results. Ifg andg8 are the relative velocities
before and after the collision, then with the dispersion anglesj ande we have, using spherical coordinates forg (u,f andg),
that:

gx85g cos~u!cos~f!sin~j!cos~e!2g sin~f!sin~j!sin~e!1gcos~f!cos~j!sin~u!,

gy85g cos~u!sin~f!sin~j!cos~e!1gcos~f!sin~j!sin~e!1gsin~u!sin~f!cos~j!, ~A18!

gz85g cos~u!cos~j!2gsin~u!sin~j!cos~e!.

Note thatg•g85g2 cos(j) and igi5ig8i , as expected. Using computer algebra we inferred by induction that for any na
numbern we have

E de gx8
2n5E

0

p

sin~j! dj E
0

2p

de gx8
2n5

4p

~2n11!
g2n. ~A19!

This relation can be checked out more easily by takingg along thez axis, for the purpose of integrating over the solid ang
so thatgx85g sin(j) cos(e), the resulting integrals can then be expressed in terms ofb functions, which are well known@31#.
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If we go back to Eq.~A17! and make a series expansion of the second exponential that appears in it, interchang
summation and the integral we are led to

I 15VS kT'
~0!

m D S kTi
~0!

m D 1/2

p3/2(
n50

`
1

n! S m

4kTi
~0!D nS 1

c
21D nE dg g exp~2mg2/4kT'

~0!!

3E de gx8
2nF3

2S kTi
~0!

m D 2

1
1

4SkTi
~0!

m D2

gx8
21

1

4S kTi
~0!

m D gx
21

1

8
gx8

2gx
2G . ~A20!

While 00 is not defined, we have used the convention 0051 in order to simplify the previous equation, so that we do not w
explicitly the term corresponding ton50. Using Eq.~A19! to carry out the integration over the solid angle in Eq.~A20! we
obtain

I 154VS kT'
~0!

m D S kTi
~0!

m D 1/2

p5/2(
n50

`
1

n! S m

4kTi
~0!D nS 1

c
21D n

3E dg g exp~2mg2/4kT'
~0!!F3

2S kTi
~0!

m D 2 g2n

2n11
1

1

4S kTi
~0!

m D g2n12

2n13
1

1

4S kTi
~0!

m D gx
2g2n

2n11
1

1

8

gx
2g2n12

2n13 G . ~A21!

Using polar coordinates (g,u,f), the integration over the angles gives

I 1516VS kT'
~0!

m D S kTi
~0!

m D 1/2

p7/2(
n50

`
1

n! S m

4kTi
~0!D nS 1

c
21D n

3E
0

`

dg g3exp~2mg2/4kT'
~0!!F3

2S kTi
~0!

m D 2 g2n

2n11
1

1

4S kTi
~0!

m D g2n12

2n13
1

1

12S kTi
~0!

m D g2n

2n11
1

1

24

g2n12

2n13G . ~A22!

Finally, the integration overg can be expressed in terms ofG functions so that

I 1516VS kT'
~0!

m D S kTi
~0!

m D 1/2

p7/2(
n50

`
1

n! S m

4kTi
~0!D nS 1

c
21D nF3

4S kTi
~0!

m D 2S 4kT'
~0!

m D n12 G~n12!

2n11
1

1

8S kTi
~0!

m D
3S 4kT'

~0!

m D n13 G~n13!

2n13
1

1

24S kTi
~0!

m D S 4kT'
~0!

m D n13 G~n13!

2n11
1

1

48S 4kT'
~0!

m D n14 G~n14!

2n13 G . ~A23!

Equation~A23! can be written as

I 1516VS kT'
~0!

m D 3S kTi
~0!

m D 5/2

p7/2(
n50

`
1

n!
~12c!nF12

G~n12!

2n11
18c

G~n13!

2n13
1

8

3
c
G~n13!

2n11
1

16

3
c2

G~n14!

2n13 G . ~A24!
; t
th
The limiting case of equal temperatures gives

I 1uc515
50

3
n2s2ApS kT~0!

m D 5/2

. ~A25!

All the other integrals were evaluated in the same way
give the expression for them it is convenient to introduce
following definitions:

S15 (
n51

`
~12c!n

n!

G~n12!

~2n11!
,

S25 (
n51

`
~12c!n

n!

G~n13!

~2n13!
,

S35 (
n51

`
~12c!n

n!

G~n13!

~2n11!
,

o
e

S45 (
n51

`
~12c!n

n!

G~n14!

~2n13!
,

S55 (
n51

`
~12c!n

n!

G~n13!

~2n11!~2n13!
,

S65 (
n51

`
~12c!n

n!

G~n14!

~2n11!~2n13!
,

h156S114cS21
4c

3
S31

8

3
c2S4,

h2535F~1,c!256F~3,c!124F~5,c!26c2
16c2

3
2

16c3

3
,
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h352S114S51
4c

3
S31

8c

3
S6,

h455cF~1,c!110cF~3,c!212cF~5,c!2~14/318c!c2,

h552cS11
4c2

3
S3,

h655F~1,c!24F~3,c!22c28c2/3,

l15c~15S1118cS216cS3112c2S4!,

l25
303

2
F~1,c!2252F~3,1!1108F~5,c!

2c~15124c124c2!,

l352c~3S116S512cS314cS6!,

l4515F~1,c!130F~3,c!236F~5,c!22c~7112c!,

l55c~6S114cS3!,

l6515F~1,c!212F~3,c!2c~618c!. ~A26!

Then the expressions for the reduced collision integ
given by Eqs.~34! and ~35! are given by

j!5h52h6,
ys

id

s.

ns
ls

J!5ch12h22
1

c2 ~c2h32h4!12~h52h6!
~12c!

c
,

Gq
!5l12l21l32l425l515l6. ~A27!

The seriesSi can be expressed in terms of hypergeome
series whose range of convergence is well known; this
why the the reduced collision integrals shown in Fig. 2 ha
been given for a restricted range of the temperature ratioc.

Using F(1,1)52, F(3,1)54/3, andF(5,1)516/15, and
noting that forc51 all the seriesSi ,i 51, . . . ,6, are zero,
we have from Eqs.~A26!

h150, h2564/15, h350, h45232/15,

h550, h650,

l150, l2596/5, l350, l45232/5, l550,

l650. ~A28!

We finally conclude from Eqs.~A27! and ~A26! that

j!u
c51

50, J!u
c51

5232/5, Gq
!u

c51
5264/5,

~A29!

which are the values that reproduce the Chapman-Ens
expressions for the transport coefficients for equal temp
tures.
f
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